
STRUCTURAL DESIGN NOTES

TOPIC C


PRESSURE VESSEL STRESS ANALYSIS


1. INTRODUCTION 

These notes supplement class lectures on "thin shell" pressure vessel stress analysis. 

The use of the simplified thin shell methods are illustrated by application to a pressure vessel that has 
many of the geometric and operational features of a pressurized water reactor (PWR) reactor vessel. 
More detailed analyses (e.g., by using a finite element computer code applied to a more realistic 
geometry) would undoubtedly be used in a final design.  However, the simplified techniques can be 
used to give approximate answers (and answers that are easily understood) for many actual stresses of 
interest. 

The reactor vessel is only one of a large number of nuclear reactor plant components for which stress 
analyses must be performed.  Hence, in one sense, the analyses here are being used to represent many 
other calculations.  But the reactor vessel is also a component of very special significance.  That is, the 
reactor vessel is, for most purposes, considered to be designed, constructed, and operated so that a 
catastrophic (rapid or brittle) failure is incredible. Calculations analogous to those of this note and 
corresponding detailed analyses are used to support statements of incredibility. 

2. DESCRIPTION OF REPRESENTATIVE VESSEL 

The representative reactor vessel shown in Fig C-1 is chosen as a specific example.  The overall height 
of the vessel (including both closure heads) is 13.3 m and the inside diameter is 4.4 m.  Subregions1 

of interest, with some approximate dimensions, are: 

- the lower head region (approximately a hemispherical shell of thickness 120 mm); 

- the beltline region (a cylindrical shell of thickness 220 mm); 

These subregions are mostly constructed of a ductile low-carbon steel (such as type SA533B). 
However, an austenitic stainless steel (such as SS304) covers all portions of the low-carbon steel 
that are adjacent to the coolant.  The purpose of the stainless steel clad is corrosion protection. 
It has about a 3 mm minimum thickness and about a 5 mm average thickness. 

1 
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Figure C-1: A Representative PWR Reactor Vessel 

(adapted from Ref 1)  Dimensions in millimeters. 

- the nozzle shell course 
region (a thick cylindrical 
shell of thickness 380 mm 
with large penetrations for 
two hot leg pipes (1.1 m 
inside diameter) and four 
cold leg pipes (0.8 m 
inside diameter); 

-	 the closure flange (a 
heavy ring that is welded 
to the closure head and 
contains holes through 
which closure studs pass); 
and 

- the closure head 
(approximately a 
hemispherical shell with 
penetrations for 
instrumentation and for 
control element 
assemblies). 

Potential structural limits are 
listed as follows, as are 
locations of major severity for 
each: 

Structural LimitLocations of Major Severity 

Pressure stress beltline cylinder, lower head hemisphere, and closure head hemisphere (away 
from joints with adjacent regions in beltline cylinder) 

Thermal stress	 in the thick portion of the nozzle shell course region adjacent to a 
main coolant pipe penetration 
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Discontinuity stress	 in vicinity of joints between beltline cylinder and lower head 
hemisphere, between beltline cylinder and nozzle shell course 
region cylinder, and between closure head and the closure flange 

Radiation embrittlement	 in the beltline cylinder adjacent to the axial center of the reactor 
core 

3. PRESSURE STRESS 

The pressure stress limits may be discussed by considering a vessel that is constructed of a thin 
cylindrical shell of length L that is capped by a hemisphere at either end.  The mean radius of the 
cylinder (and the caps) is denoted by R.  The cylinder has a uniform thickness equal to tc; each cap 
has a uniform thickness equal to ts. The vessel is subjected to an internal pressure (p) and a zero 
external pressure.  No other external forces act.  The vessel walls are at a uniform temperature and are 
constructed of a single material. 

3.1 Long Cylinder 

In a region of the cylinder that is far from the ends, three normal stresses (sr, sq, and sz) may be 
calculated to characterize the thin shell stress state.  These stress components are, respectively, stresses 
in the radial, hoop, and axial directions.  The stresses sq, and sz are found from equations of static 
equilibrium. The stress sr is obtained by averaging the pressures on the inner and outer wall. 
Therefore: 

Ê p R ̂  
s = Á ˜ ;	 (1)q Ë t ¯ c 

s = Á
Ê p R ̃̂  ; and	 (2)z Ë 2 t ¯ c 

Ê 1 ˆsr = - Ë 2
p̄  .	 (3) 

An elastic calculation of strain in the hoop direction (q direction) can be converted to wc, the radially 
outward displacement of the center surface of the cylinder. 

Ê p R2 ˆ wc = 
Ë 
Á 

2E t ¯ 
˜ 

ÎÍ 
È2 - n + n Ë 

Ê t
R
c 

¯ 
ˆ 
˙̊ 
˘ ;	 (4) 

c 

where: the first term on the right hand side of Eq 4 gives the sq contribution to wc; the second term, 
the sz contribution; and the last term, the sr contribution. 
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3.2 Sphere 

In any portion of the hemispheres which act to give displacements and stresses that are the same as 
those in a full sphere,2 the following analogous stress and displacement equations apply (the 
subscripts q1 and q2 refer to two orthogonal directions within the shell center surface): 

sq1 =sq 2 = Á
Ê p R ̃̂  

; (5)
Ë 2 t ¯ s 

Ê 1 ˆsr = -Ë 2
p¯ ; and (6) 

Ê p R2 ˆ È Ê ts ˘ ws = 
Ë 
Á 

2E t ¯ 
˜ 

ÎÍ
1- n + n Ë R 

ˆ 
˙̊ 

. (7)¯ 
s 

4. THERMAL STRESSES 

Thermal stress calculations may be illustrated by considering a cylinder that is subjected to a known 
temperature distribution.  The distribution is a function only of x (the distance measured radially 
outward from a position (x = 0) at the shell center surface).  Thus, the inner surface of the shell is 
located at x = - _ tc and the outer surface is at x = + _ tc. The temperature distribution (T(x)) is 
converted to a “thermal strain” distribution (eT(x)) by using an integrated aT (the coefficient of 
linear thermal expansion), as follows: 

T 
eT = Ú a T dT ; (8)

TR 

where TR is a convenient reference temperature (e.g., 20°C); and where this integral provides eT as a 
function of T.  The thermal stresses may be expressed in terms of the spatially average thermal strain 
( e T ) as follows: 

1 
+ t

eT = 
1 

Ú 
2 c 

(eT ) dx ; (9)
t 1c - t

2 c 

where, by evaluating elastic stress-strain relations, by requiring that axial strains are uniform (at a 
position far from the ends of the cylinder); and by invoking zero internal pressure and zero axial 
force: 

These portions of the hemispheres would have no shell moments and no shell shear forces. 2 
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ez = eq = eT ; and (10) 

sz = sq =
Ê 
Ë 1-

E 
n

ˆ (eT - eT ) ; (11)¯ 

where eT indicates the local value of thermal strain at a specified x-position. 

5. BENDING (CURVATURE) OF A CYLINDRICAL SHELL 

In §3 and §4, the radial displacement (w) is uniform.  Now consider a portion of the cylindrical shell 
in which the shell may have an axial slope (non-zero value of f = dw/dz) and an axial curvature (non
zero value of d2w/dz2). The existence of such portions of the shell must be caused by shell moments 
and shell shears.  Those moments and shears would typically develop near the ends. 

The developments that follow are based on slopes and curvatures which may vary in the axial 
direction but have no changes in the hoop direction. 

5.1 Strain Relations 

The shell curvature results in a “bending strain” at any cross-section given by ebz: 

tc d2w 
ebz = - ; (12)

2 d z 2

The corresponding tensile strain variation through the shell thickness is taken to be linear (analogous 
to a statement of beam theory that “plane sections that are originally normal to the beam axis remain 
plane and normal to the beam axis in the deflected condition”). 

e = e + 
Ê
Á 2x ̂̃  ebz  . (13)z z Ë t ¯ c 

The tensile strains in the hoop direction are uniform at each axial position: 

eq = eq =  (w/R) . (14) 

5.2 Stress Relations 
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The stresses at each position may be related to shell forces and shell moments (N = normal force per
unit center surface length; M = moment per unit center surface length; subcripts indicate the normal
direction for the face on which N or M acts) as follows: 

Ê N ˆ Ê12 M ˆ 
s z = Á z ˜ - Á z x ; (15)

Ë tc ¯ Ë tc 
3 ¯ 

sq = Á
Ê 

Ë 

N
tc 

q ˜̂ 

¯ 
- ÁÊ 

Ë 
12 

tc

M
3 

q ˆ 
¯ 

x ; and (16) 

Ê 1 ˆsr = - p . (17)¯Ë 2 

5.3 Shell Variable Relations 

The shell shear force variable (Vz = the shear force normal to the axial direction (per unit center 
surface length)) may be related to other shell variables by using force and moment balances, as 
follows. Each equation is preceded by the name of an analogous beam theory equation. 

shear3 dV z =  p - Nq  ; and (18)
dz R

moment dMz = V z . (19)
dz 

Additional analogs of beam theory equations are as follows: 

df
slope = Mz /D ; (20)

dz 

dw
displacement = f ; (21)

dz 

cwhere4 D = E t3 

2 . (22)
12(1-n ) 

The name “shear” implies that Eq 18 could, in principle, be integrated to obtain a shear 
distribution. The hoop normal force N q is however a linear function of w(z).  w(z) must be 
known prior to integration.  This feature identifies a “beam on elastic foundation.” 

3 
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The moment in the hoop direction may be considered to be induced by the moment in the axial
direction since: 

Mq = n Mz . (23) 

Other equations that relate shell variables are: 

c cNq = E t w + n Nz - n t p 
; and (24)

R 2 
(24) 

N = pR 
. (25)z 2 

5.4 Differential Equation


Combine many of the above equations to obtain a differential equation for w as a function of z:


d4 w 4 4 

dz4 +  4 b w =  4 b wp  ; (26) 

where w = wp is a particular solution to the differential equation and is a result identical to Eq 4: 

wp = Á
Ê p R2 

˜̂ È2 - n + n
Ê tc ˆ ˘ ; (27)

Ë 2E t ¯ ÎÍ Ë R¯ ˙̊
c 

and where b is given by: 

b = Á
Ê 3(1-n 

2 

2) ˜̂ 
. (28)

Ë R2 t ¯ c 

5.5 Solution 

The general solution of Eq 26 is: 

1
4 

The symbol D denotes “flexural rigidity” and plays a role that is similar to the product (EI) in 
beam theory. 

4 
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Ï wp + ¸
Ô Ô 

w = Ì exp(-b z)[c1 cos(b z) + c2 sin(b z)] + ˝ ; (29) 
Ôexp(-b(L - z )) c3 cos(b (L - z) sin(b (L - z)) ÔÓ [ ) + c4 ]˛ 

where the first line on the right hand side is the particular solution of Eq 27; the second line has a 
decaying envelope that dimishes as z increases from zero; and the final line has a decaying envelope 
that dimishes as z decreases from z = L.  The envelopes reach a small value (exp (-3) = 0.050) as 
[(distance from end) = (3/b)] so that disturbances caused by end moments or by end shears are not 
felt at large distances. 

6. DISCONTINUITY STRESSES 

6.1 End of Long Cylinder 

If occurrences near z = L decay in the manner indicated above, then displacements near z = 0 can be 
considered to depend only on the shear & moment at z = 0. That is, if the subscript “o” denotes 
occurrences at z = 0, then the end radial displacement and the end slope are: 

Ê 1 ˆ Ê 1 ˆ wo =  wpc + Á 
3 Vo + Á 

2 Mo ; and (30)
Ë 2b D¯ Ë 2b D¯ 

Ê 1 ˆ Ê 1 ˆfo = - Á 
Ë 2b 2 D ¯ 

Vo - Á 
Ë bD¯ 

Mo . (31) 

6.2 Edge of Hemisphere 

A similar, but more involved, equation development leads to the following equations for the 
hemisphere that is joined to the cylinder at z = 0: 

wo = wps - Á
Ê 2Rl ˆ̃ Vo + Á

Ê 2l 2 ˆ̃ Mo ; and (32)
Ë E t ¯ Ë E t ¯ s s 

Ê 2l 2ˆ Ê 4l3 ˆ
fo = - Á 

Ë Et 
˜ 
¯ 

V o + Á 
Ë R E t 

˜ 
¯ 

Mo ; where (33) 
s s 



1
4 
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l = b R ; and (34)s 

b = 
Ê
Á 3(1-n 2) ˆ̃ . (35)s Ë R2 t2 ¯ s 

6.3 Combination 

We now have four linear equations (Eqs. 30-33) in four unknowns (wo, fo, Mo, and Vo) and therefore 
can solve for conditions at the joint (z = 0) that give continuity. Subsequently, corresponding values of 
c1 and c21 (based on Eq. 29; c3 = 0; and c4 = 0) can be found and used to determine conditions in the 
cylinder for other values of z. 

7. RELATED INFORMATION


Related information on pressure vessel stress analyses can be found as follows:


- thin shell pressure stresses (Ref. 2, pp. 27-32; Ref. 3, pp. 33-45);


- thick shell pressure stresses (Ref. 2, pp. 32-37; Ref. 3, pp. 56-64);


- thermal stresses (Ref. 2, pp. 37-44; Ref. 3, pp. 74-88);


- discontinuity stresses (Ref. 3, pp. 159-185); and


- combination information for a cylindrical shell (Ref. 4) and for a spherical shell (Ref. 5).


Be aware that in this note and in the references, a variety of approximations and notations are used.

For example, the thin shell approach adopted herein does take some account for the shell "squeezing" 
caused by pressure action in the radial direction.  Other references adopt an assumption that the 
effect is negligible.  The definition of the radius R provides a second example.  It is used herein as 
the radius of the shell center surface but is used elsewhere as the shell inside radius. 

Other reference-to-reference differences exist; therefore each reference should be used with care. 
However, each reference provides a unique viewpoint and derivation approach.  It can be used as a 
useful supplement to the information of class lectures and this note. 
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APPENDIX C1 
Stresses Near Axial Center of Long Cylinder 

Comparison of Alternate Approximations 
J.E. Meyer 

revision of July 1996 

PRESSURE STRESSES (at r = a) 

(STRESS at r = a) / (PRESSURE) 
Equations for Stress at r = a (s / p) for (b / a ) = 1.1 
radial hoop axial radial hoop axial 

Exact, Thick Shell - p 1b 1c -1.00 10.52 4.76 
Thin Shell for Curvatures - (p / 2) 2b 2c -0.50 10.50 5.25 

Ring Finite Element 3a 3b 3c = 1c -0.48 10.00 4.76 

sq = ÁÊ b2 + a
2

2 ˆ p (1b) sz = Á
Ê a2

2 
ˆ p (1c) sq = 

p R 
(2b)

Ë b2 - a ¯ Ë b2 - a ¯ t 

sz = 
p R 
2 t 

(2c) sr = -
Ê 
Ë b

a 
+ a 

ˆ 
¯ p (3a) sq =

Ê 
Ë b -

a
a 

ˆ 
¯ p (3b) 

Symbols are: p = inside pressure; zero = outside pressure; s = stress; (r, q, z) = (radial, hoop, axial) 
coordinate directions; r = b = radius of shell outside surface; r = a = radius of shell inside surface; r = 
R = 0.5 (b + a) = radius of shell central surface; t = b - a = shell thickness. 

THERMAL STRESSES (at r = a) 

radial direction hoop direction axial direction 

sr = 0 sq = 
E ( eT - eTa) sz = 

E ( e T - eTa)1- n 1 -n 

Symbols are: E = Young’s Modulus; n = Poisson’s Ratio; eT = volume averaged thermal strain; eTa = 
thermal strain at r = a. 
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Category Primary Second- Peak 
ary 

General Local Bending 
Membr Membr 

Symbol Pm PL Pb Q F 
Normal Force X X 

Moment X 
Includes X X X 

Discontinuities 
Includes Stress X 
Concentrations 

Caused by X X X X X 
Mechanical Loads 

Caused by Thermal X X 
Stresses 

Tensile Strain Bending Strain Fatigue 
Failure Mode Limit Control Limit Control 

Load Shake- Load (Shake
down) down) 

Limit from Concepts Sy 2 Sy 1.5 Sy 2 Sy S-N 
Curves 

Code Limits Sm 

1.5 Sm 

--------1.5 Sm -------
----------------3 Sm ---------------

UF < 1 
Inelastic Analysis e =1% 

(Elevated e = 2% 

Temperature) ------------ e = 5% -------------

UFT < D 


