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INTRODUCTORY DISCUSSION ON CREEP 

1. Creep Stress-Strain Analysis 

If the creep curves in Fig.1 corresponding to 
various stress levels are assumed to be 
similar in shape, a general stress-strain-time 
relation can be written in the form 

e c = f*(s)g*(t)h*(T),  (1-1) 

where f*(s), g*(t) and h*(T), are arbitrary 
functions of stress, time, and temperature, 
respectively. The temperature dependence 
may also somehow be fitted into the 
parameters of the functions f(s) and g(t), 
thus 

e c = f(s)g(u). (1-2) 

The constant stress curves for metals are fit reasonably well in both the primary and 
secondary creep ranges power function forms for f and g, is, by 

e c 
Á
Ê s ˆ̃ 

n 

Á
Ê t ˆ̃ 

m 

= ,  (1-3) 
e c Ë s ¯ Ë t ¯ o o o 

where e co , so and to are reference values of creep strain, stress and time chosen to 

produce dimensionless forms, and m and n are pure numbers. Any of these parameters 
could be temperature dependent. 

Although Eq. (1-2) may fit constant stress curves adequately, there is inconsistency when 
it is applied to variable stress situations. 
For example, assume that creep at stress s1 has progressed to e1

c at t1, then the stress is 
increased to s2 > s1, Eq. (1-3) predicts a sudden jump in creep strain. This is 
objectionable both theoretically and experimentally because creep strains, by definition, 
increase gradually with time. 
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This situation of the mathematical model can be obviated by expressing the creep 

constitutive equation in terms of strain rate ė c = 
dec 

, rather than strains. 
dt 

Differentiating Eq. (1-3) we obtain: 
c 

˙ c meo Á
Ê s ˜̂ 

n 

Á
Ê t ˜̂ 

m-1

e = (1-4)
t Ë s ¯ Ë t ¯ o o o 

which can be expressed as 

ė c = B 
Ê
Á s ˆ̃ 

n
Ê
Á t ˆ̃ 

p

 (1-5)
Ë s ¯ Ë t ¯ o o 

When p < 0, we have a time-hardening law, if p > 0, Eq. (1-5) describes a material

softening with time. This formulation may be useful if there are metallurgical changes in

the material occurring as a function of time.

An alternate formulation is obtained by using Eq. (1-3) to eliminate time from Eq. (1-4).

According to Eq. (1-3),


n 1


Ê 
m 

Ê 
- n 

Ê Ê Ê 
-

m Ê m

Á t ˜̂ 

= Á s ˜̂ Á e c 
˜̂ 

, Á t ˜̂ 
= Á s ˜̂ Á e c 

˜̂ 
;


Ë t ¯ Ë s ¯ Ë e c ¯ Ë t ¯ Ë s ¯ Ëe c ¯ 
o o o o o o 

substituting this in Eq. (1-4) gives: 
n - (m-1) (m -1) c cme Ê s ˆ 
ÈÊ s ˆ m

n 
Ê e ˆ m 

1 ˘ 
ė c = o Á ˜ ÍÁ ˜ Á ˜ ˙ 


t Ë s ¯ ÍË s ¯ Ë e c ¯ ˙
o o o oÎ ˚ 

c cme Ê s ˆ 
n
m Ê e ˆ 

1-
m
1 

ė c = o Á ˜ Á ˜ (1-6)
t Ë s ¯ Ë e c ¯ o o o 

which can be expressed as: 
c 

ė c = CÁ
Ê s ˜̂

q 

Á
Ê e ˜̂ 

r

 (1-7)
Ës ¯ Ë ec ¯ o o 

If r < 0, Eq. (1-7) represents a strain hardening law. This equation uniquely defines the

state of the material by the instantaneous values of s and e c.

These creep strain rate-laws are free from the inconsistency of the creep strain-law. In

either case a change in stress level results in an instantaneous change in creep strain rate,

but not in an instantaneous change in creep strain.

However, one deficiency still exists. Both equations predict zero creep strain if stress is

suddenly reduced to zero, whereas the phenomenon of creep recovery is known from

experiments.

These creep laws neglect recovery effects.


2. Creep of an Internally Pressurized Thick-Walled Sphere 

The equilibrium equation in spherical symmetry is: 
ds 2r + (s r - sq ) = 0 .  (2-1)
dr r 
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The relations between rate of strain and rate of radial displacement in spherical symmetry 
are: 

ė 
r = 

du̇ 
, ė 

q = 
u̇ 

.  (2-2a,b)
dr r 

The assumption of incompressibility in the inelastic range, i.e. no volume change in creep 
(or plastic deformation), 

ė 
r + ė 

q + ė 
q = 0  (2-3) 

gives a relation between the radial and tangential strain rates: 
ė = -2ė .  (2-3a)r q 

Substituting Eqs. (2-3a) and (2-2b) into Eq. (2-2a) gives a differential equation for the 
radial displacement rate: 

du̇ 2 
+ u̇ = 0  (2-4)

dr r 
Integration yields 

u̇ = C1r -2 , C1=const.,  (2-5) 
And substituting into Eqs. (2-2a,b) gives: 

ė = -2C1r -3 , ė 
q = C1r -3 .  (2-6)r 

A creep rate equation for secondary creep at a given temperature in a multi-axial system 
is assumed in the following form: 

1 
* n 

ė* = Bs *n or s* = Á 
Ë 

Ê e 
B 

˙ 
¯ 
ˆ 

,  (2-7) 

where the effective stress and the effective strain rate based on the distortion energy are 
defined by 

1 

s* = 
1 [(s1 - s2 )

2 
+ (s2 -s3 )

2 
+ (s3 -s1 )

2 ]2 ,  (2-8)
2 

ė* = 
2 [(ė1 - ė2 )

2 
+ (ė2 - ė3 )

2 
+ (ė3 - ė1)

2 ]2
1 

.  (2-9)
3 

In the present case of spherical symmetry, i.e. 
s1 = s2 = sq , s3 = sr , 
ė1 = ė2 = ė 

q  , ė3 = ė ,r

Eqs. (2-8) and (2-9) reduce to: 
*s = sq - sr  (2-8a) 

ė* = 
2
3 

(ė 
q - ė 

r ) .  (2-9a) 

Combining Eqs. (2-3a) and (2-9a) gives 
ė* = 2ė 

q ,  (2-10) 
And combining Eqs. (2-10) and (2-2b) with Eq. (2-5) gives 

ė* = 2C1r -3 .  (2-11) 
Substituting Eq. (2-8a) into the equilibrium equation, Eq. (2-1), 

ds 2 *r = s 
dr r 

and utilizing the creep law, Eq. (2-7), together with Eq. (2-11) yields 
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1 
nds r = 2Ë 

Ê 2C1 
¯ 
ˆ r -

n 
3 

-1( ) (2-12)
dr B 

and by integration 
1 

r nsr = -2 n 
Ë 
Ê 2C1 ˆ n 

( ) -
3 

+ C2 .  (2-13)
3 B ¯ 

Designating 
1 

C = -2 n 
Ë 
Ê 2C1 

¯ 
ˆ n 

,  (2-14)
3 B 

Eq. (2-13) becomes 
3 

-

sr = Cr n + C2 . (2-13a) 
Utilizing Eq. (2-14) in Eq. (2-12) gives 

ds 3 3 
-1r ( ) = - C r n . (2-12a)

dr n 
Substituting Eqs. (2-12a) and (2-13a) into the equilibrium equation, Eq. (2-1), gives a 
relation for the tangential stress: 

Ê 3 ˆ -
n 
3 

sq = CË1- + C1  (2-15)¯r 
2n 

With internal and external pressures acting on the inside and outside faces of the hollow 
sphere, defined by r = ri resp. r = ro, the boundary conditions are: 

s = -p .  (2-16)r r =ri 
= -pi , sr r =ro o 

Applying these boundary conditions to Eq. (2-13) gives the following expression for the 
radial creep stress: 

3 3
Ê r ˆ Ê r nÁ o ˜ 

n
o ˆ- ¯Ë ri ¯ Ë r 

sr = (pi - po ) 3 .  (2-17) 
Ê r ˆ nÁ o ˜ -1

Ë ri ¯ 


Differentiating Eq. (2-17), 

ds r = 
3(pi - po) Ê ro ˆ n 

3 È 
Í 
Ê
Á ro ˆ̃ 

n 
3 

-1 
˘ 
˙ 

-1 

.  (2-18)
dr nr Ë r ̄  

ÍË ri ¯ ˙Î ˚ 
Combining the creep rate equation, Eq. (2-7), the relations for the effective strain rate, 
Eqs. (2-9a) and (2-10), and Eq. (2-18), gives the following expression for the tangential 
creep strain rate: 

È 3 ˘ 
n 

B
Í 3 ( pi - po )Ë 

Ê ro 
¯ 
ˆ n ˙ 

ė 
q

Í 2n 
3 

r ˙ ,  (2-19)
2 Í Ê r ˆ n ˙

Á o ˜ -1

Í Ë ¯ ˙
Î ri ˚ 

The tangential creep strain rate at the inner surface, r = ri, is 
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È ˘ 
n 

ė 
r= ri = 

dri = 
B Í 

Í 
2
3 
n ( pi - p

3 

o )
˙ 
˙ 

.  (2-20)q ridq 2 Í 
Á
Ê ri ˆ̃ 

n ˙ 

1

Í ˙Î Ë ro ¯ ˚ 
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