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PLANE STRAIN CONDITIONS AND ISOTROPIC MATERIAL

1. General Relations

For linear elastic isotropic material with temperature-independent materials
properties the thermoelastic stress-strain relations for axisymmetric plane strain
(polarsymmetric) conditions in the cylindrical coordinate system correspond to the set of
Egs. [M-11A/(24)] with the shear strain components vanishing, thus:
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where u; and u(r) and T(r) = Ti(r) — T,. The equilibrium conditions are reduced to:
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Solving Egs. (1) for the stresses gives the following stress-displacement relations:
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Substitution of these expressions into the equilibrium equations Eq. (2) renders an
ordinary differential equation for the radial displacements u, = u(r);
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which has the general solution
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u(r)=1+v —frT dr+Cr+£ (5)

where C; and C, are constants of 1ntegrat10n.
Utilizing Eq. (5) in Egs. (1) and (3) yields the following expressions for the strain
components and the stress components:
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The constants C; and C; have to be determined from the boundary conditions for the
radial stresses, respectively the radial displacements at the curved cylinder surfaces. The
value of the constant ¢, [see Eq. (1¢)] follows from the boundary conditions at the
cylinder ends.

2.

a)

b)

Axial Boundary Conditions

In the case of rigid support of the cylinder ends in z-direction: w = 0 and ¢, = 0, so
that Eq. (7c) reduces to:
o. = —E—aT(r)+LCI.

: l-v (1+v)(1-2v)
If in the case of free cylinder ends there are no axial external forces acting on the
cylinder, the resultant of the axial stresses must vanish at the cylinder ends, i.e. the
axial stresses 0, must form an equilibrium system:
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utilizing Eq. (7c¢), this condition becomes:
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If the cylinder body is subjected to tensile forces acting along the cylinder axis, the
following relation holds:
f odA=P. (11)
A
In all three cases a), b), and c) the radial stresses o, and the tangential stresses o, in
the central region of a long cylinder remain unaffected by the boundary conditions at
the end faces of the cylinder.



3. Hollow Cylinder Subjected to Polarsymmetric Temperature Field and Uniformly
Distributed Pressure Loading of the Cylindrical Surfaces

The radial stress boundary conditions for a hollow cylinder, r, < r <r,, subjected

to uniformly distributed loading of the internal and external curved surfaces for pressure
loading are:

(0,),., =-p (0,),.. =-p.; (12)
for tensile loading positive signs are valid. Substitution of these boundary conditions into

Eqgs. (7a) renders the required relations for the constants of integration. The boundary
condition (o, ) . =-—p, yields:
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Substituting the relations obtained for the constants C; and C,, Egs. (14) and (15), into
the expression for the radial displacement, Eq. (5), gives:
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This solution is being introduced into Eqgs. (1) in order to obtain relations for the stress
components:
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4. Special Case: Hollow Cylinder Subjected to Pressure Loading in Isothermal
Condition

In the special case
)., =-p, (o). =-n. T(r) =0, (20)

the following expressions for the stress components are obtained from Egs. (17), (18),
and (19), (e.g. TIMOSHENKO/GOODIER, p. 50; KANTOROWITSCH, p. 25)
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For the axial stresses 0, according to the end conditions the following relations hold:
a) for the hollow cylinder with open ends:
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b) for the hollow cylinder with closed ends:
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c) for the hollow cylinder with open ends and axially rigidly restrained end faces:
2
o, = v(o,, + 06) ZVM. (25¢)
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In these three cases the following expressions for the radial displacement are obtained:

a) for the hollow cylinder with open ends:
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Specially for p; =0, p, = 0:

> (u,),_, , which means that the wall thickness is decreasing.
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b) for the hollow cylinder with closed ends:
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5. Special Case: Hollow Cylinder Subjected to Polarsymmetric Temperature Field T(r)

5.1 General Relations

In the special case
(@), =0. T(r) = (1), (27)
Egs. (17) and (18) reduce to (see e.g. BOLEY/WEINER, p.290):
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The axial stresses obtained from Eq. (21) for the case of axially rigidly constrained
cylinder ends, i.e. w =0, €, = 0, are:
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and for the case of free cylinder end faces:
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The expression for the radial displacement u, follows from the general relation Eq. (16):
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Herewith the values for the radial displacement at the curved surfaces are:
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In the case of axially rigidly constrained cylinder end faces, i.e. w = 0, ¢, = 0, the radial
displacement is:
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Introducing an average temperature value
2mr,

) ~[[rT(r)dral@ ,
T = =& =— 2frT(r)dr; (34)

2nt,

ro—T,
drd0 oo
“{“[r '

and a temperature averaged over the interval from 1; to r, designated #### yields
simplified forms of the thermal stress relations Egs. (28), (29) and (30):
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5.2 Simplified Equations for the Thin-Walled Hollow Cylinder

Introducing

t=r-1, (38)
designating the wall thickness of the hollow cylinder, the following relations hold
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Considering a thin-walled hollow cylinder, t << r;, and neglecting terms of the order t*
compared with terms of order (1;t), gives the following approximate expressions:
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Further, replacing all radii by a mean radius R, i.e. let
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reduces the exact relations Egs. (28) (29) and (30b), to the approximate expressions:
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Neglecting in these expressions terms with the factor Ewhlch are small as compared

with T, renders the approximate thermoelastic equations for the stress components in a
thin-walled cylindrical shell:
Ea | |

0,=0, O, =0, l—ﬁdex—TJ. (43)

IR

6. Hollow Cylinder Consisting of Coaxial Lavers, Subjected to a Polarsymmetric

Temperature Field, as an Approximate Model for the Radially Inhomogeneous
Hollow Cylinder

A hollow cylinder, r, < r <r,, having radially varying thermoelastic properties E(r), v(r),
a(r), in practical engineering analysis of the thermoelastic stress-strain field can be
approximated by considering the hollow cylinder to consist of n coaxial layers each
having constant material properties.

Thereby, the differential equation for the radial displacement in the axisymmetric plane
(polarsymmetric) case, incorporating material properties as functions of the radial
coordinate,
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reduces to n coupled differential equations for the individual layers in each of which the
materials properties have constant values. For the k-t layer the differential equation for
the radial displacement reads:
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Corresponding to Eqs. (5), (6), and (7) one obtains:
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The 2n constants of integration in the above equations are determined means of the
boundary conditions for the total hollow cylinder
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and by means of the continuity conditions for the radial stresses at the interfaces
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as well as by the corresponding continuity conditions for the deformation
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As far as the boundary conditions at the cylinder end faces are concerned in the case of
rigid axial restraint of the end faces, there is the axial strain condition: €, = 0; in the case
of free end faces, loaded by an axial resultant force P, there is the equilibrium condition:
n_ o [ 2a, fro (rkza _rk%)(zvkclk +(1_Vk)8z)]
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