Appendix—Elasticity Theory

A.1 EQUILIBRIUM CONDITIONS

Figure A.1 shows an interior region of a solid bounded
by the closed surface S. If the region contained in S is not
accelerating, Newton’s law of motion requires that the
components of the forces on the region in each of the
coordinate directions must be zero. If body forces such as
gravity are neglected, the only forces acting on the region
are those exerted on the surface S by the material
outside S.
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Fig. A.1 Region in a solid.

The forces on the surface S can be represented by a
stress vector g, which has components o4, 0, , and o, in the
three directions of a Cartesian coordinate system. The
magnitude and direction of the stress vector vary with
position on the surface S. Figure A.1 shows a small element
of area dS of the surface S. The outward normal to the
surface at that point is denoted by n. The stress vector at
the location of dS will in general have a component along
the normal, which represents a normal stress, and com-
ponents tangent to the surface element, which are shear
stresses.

The x-component of the force on the element of
surface dS is o, dS. The x-component of the net x force on
the entire region enclosed by the surface S is the surface
integral of o, dS. At equilibrium this integral and its
counterparts in the y- and z-directions must be zero, or

Jooxds=0
fsov dS=0 (A1)
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To express 0, 0y, and 0, in a more convenient manner,
we consider the surface element dS in Fig. A.1 to be the
oblique face of a very small tetrahedron, as shown in
Fig. A.2. The three mutually perpendicular planes of the
tetrahedron are each perpendicular to one of the coordinate
axes. The components of o can be expressed in terms of the
unit normal n and the three stress vectors acting on the
coordinate faces. The stress vectors on each coordinate
plane are resolved into a normal stress component (e.g.,
Oy x) and two shear components (e.g., 0., and 0,) that act
tangentially to the coordinate plane.

The components of the stress vectors on the coordinate
planes are written as o;;, where i refers to the coordinate
plane in which the stress acts (e.g., 04, 04y, and 0y, all act
on the plane perpendicular to the x axis) and j refers to the
direction in which the stress component acts.

The area of each of the coordinate planes in Fig. A.2 is
a projected area of the oblique face dS. The area over which
Uxx, Oxy, and oy, act is n - i dS = n, dS, where i, j, and k
are the unit vectors in the x, y, and z directions,
respectively. The direction cosines of the surface normal are
ng=n-*in,=n-jandn, =n-Kk.

The tetrahedron of Fig. A.2 is in mechanical equilib-
rium owing to the forces on its four faces, or the net force
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Fig. A.2 Diagram for relating surface forces to nine com-
ponents of stress tensor,



in each coordinate direction is zero. According to the sign
convention,* force components on the coordinate faces are
positive if pointing toward the -negative coordinate axis
under consideration. The x-direction force balance is

0Oy A4S — Oy Ny dS — Oy xny dS — 0,40, dS =0

If dS is canceled and the last three terms are written as the
scalar product of n and the vector whose components are
Oxx» Oy x, and 0, the preceding formula becomes

Ox =0 * (Oxxi* Oy xj + 02xK)
Similarly,
Oy =0 * (Oxyi*+ Oyyj* 02yK)
0z = * (Oxzi * Oyzj + 022K) (A.2)

Equation A.2 relates the components of the stress vector o
to the unit normal describing the orientation of the surface
and the nine components of the stresses acting on the three
coordinate planes, usually denoted collectively as the stress
tensor:

Oxx Oxy Uxz
0= | Oyx Oyy Oy. (A.3)

Ozx Ozy U2z

An important relation between the off-diagonal ele-
ments of the tensor ¢j; can be obtained by applying the
condition that the angular acceleration of any element of
volume is zero. This restriction leads to the relations

Oxz = Uzx (A.4)
Uzy = Oyz

Or, of the nine components of the stress tensor of Eq. A.3,
only six are independent; the tensor is symmetric.

*The signs of the stress component 0j; are determined
by the following convention: consider a volume element
bounded by planes perpendicular to the coordinate axes. If
the outward normal of one of these plane surfaces is in the
direction of a positive coordinate axis, the 0jj are positive if
the stress acts in the positive j direction. Thus a normal
stress, such as 0y, is positive if in tension. Pressures that
act inward in a volume element (compression) are con-
sidered as negative stresses. Conversely, if the outward
normal of the plane is in the direction of a negative
coordinate axis, the gj; are positive when the stress acts in
the negative j direction. Again, the normal components are
positive if they place the volume element in tension. The
three coordinate planes of Fig. A.2 are surfaces with
negative normals, and the gy are positive as drawn on the
figure. In a force balance on the element of Fig. A.2,
therefore, the contribution to the total force in the positive
x-direction due to the coordinate plane perpendicular to
the x axis is —0, 4 times the area of the plane.

Substitution of Eq. A.2 into Eq. A.1 yields equilibrium
relations in terms of the stress tensor o;. For the
x-direction, the result is

Jon« (0xxi* Oyxj+ 0,4k dS=0

Applying the divergence theorem* to the surface
integral in this equation yields the final form of the
equilibrium relation:

00y  00yy 00,4
fax 3 . ~ — .5
ax dy "oz 9 tA.5)
Similarly, for the y- and zdirections, the equilibrium
conditions are

00y 00y, 00,y _

e (4.8)
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A2 DISPLACEMENTS

A body subjected to stress will become distorted or
strained as a result. The state of strain is described by the
displacement vector, which connects a point (x,y,z) in the
unstrained body with the location to which this point has
moved (x +u, y +v, z+w) in the strained condition. The
lengths u, v, and w are the components of the displacement
vector; in general, they are functions of position in the
solid.

The stress applied to the body is not related to the
absolute values of the displacement components. The fact
that a body is made to undergo translation or rotation
because of an applied force, for example, has nothing to do
with the material properties of the solid. The property that
is uniquely determined by the applied stress is the relative
displacement of points in the solid. The solid-line rectangle
in Fig. A.3 represents a plane rectangular element of
dimensions dx and 8y in an unstressed body (for simplicity,
only two dimensions are considered). After stress has been
applied, the rectangle is distorted into the dashed four-sided
figure. The arrows connecting the corners of the unstrained
and strained figures are the displacement vectors for these
four points. The displacement vector of the point (x,y) in
the lower left-hand corner has components u and v. Since
the relative motion of adjacent points is small, the
displacement components at other locations can be ap-
proximated by Taylor series expansions about the values at
the point (x,y). Thus, the displacement components of the

*For a vector F defined over a region of volume V and
surface S, the divergence theorem is

Sn-ras= L,v-Fav
where, for Cartesian coordinates,

g 0Fs OBy | OF,
L Bx+3y+3z



lower right-hand corner (x + §x,y) are u + (du/dx) §x and
v + (9v/ox) 6x.

The aspect of the displacement field which is directly
related to the applied stress and the material properties is
the collection of derivatives of the displacement, du/dx,
dv/dx, . .., not the displacements u and v proper. In three
dimensions there are nine spatial derivatives of the
displacement-vector components which can be expressed as
the strain tensor:

u o du
ox dy 0z
v dv v
Si ax dy 0z A8
v ow o
ax dy 0z

The response of the solid to an applied force is
governed by the law that relates the stress tensor of Eq. A.3
and the strain tensor of Eq. A.8. However, the stress tensor
contains only six independent components, whereas the
strain tensor of Eq. A.8 contains nine independent quan-
tities. Thus, the symmetric stress tensor cannot be directly
related to the strain components as given in Eq. A.8. To
circumvent this difficulty, we can split the strain tensor S
into two parts:

Su = € + Wy (A.9)
where ¢;; is the symmetric deformation tensor:
'(au+@_u) (22) (aLa_w)’
ax  Ox dy odx dz 0x
1 dv _du\ fov av) fov  ow
=3 (a*é‘y) (‘ay*a) (a—z‘*a—y) et
(= 5 (= &) (3, 2=)
| \ax 0z dy 0z dz 0z b
and wj; is the skew-symmetric rotation tensor:
o (B-2)@-3)
dy 0x/ \oz Ox
| a_v_a_u) (a_v_@)
@5 T3 (ax dy 0z oy (ALh)
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The physical meaning of the components of €;; and wj;
in terms of the type of motion experienced by the body
can be seen from Fig. A.3.

Consider the bottom edge of the rectangle. Originally
its length was &x; under stress the corner (x,y) moves
a distance u to the right, and the corner (x + §x.,y) moves a
distance u + (du/dx) 6x to the right. The strain is a
fractional change in length, or

Elongation in the x-direction _u + (du/dx) 6x —u _Ju
Unit length Sx ox

This is the €, , component of the deformation tensor. Thus,
the diagonal elements of Eq. A.10 represent the elongations
or normal strains in the three coordinate directions.
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Fig. A.3 Deformation of a region of a solid (two-
dimensional).

The angles a and § in Fig. A.3 represent the departure
of the four-sided figure from its original rectangular shape.
Since the strains are small, these angles are given by

“ma_w(awax}ax—v_g_v
ox 0x

and

u+(du/dy)dy —u _du
by ay

f~tanf =

The sum a + ( represents the departure of the original angle
from 90°, which is denoted as shear strain,

5 du  ov
Departure from 90" angle =a + (§ = (E + 5")

This sum is twice the €5, component of the deforma-
tion tensor. The other off-diagonal elements in Eq. A.10
represent the shear strains in the solid.

The angle of rotation of the plane figure in Fig. A.3 is
the average of the angles « and [}, taking positive rotation in
the clockwise sense, or

Rotation as a solid body = %{ﬂ - 0r)

2\dy ox



Thus the tensor wy; of Eq. A.11 represents pure rotation of
the body.

Only the deformation tensor €;; is determined by the
stress tensor and material properties. Hooke’s law is an
example of such a relation for elastic deformations,

A.3 COMPATIBILITY RELATIONS

Additional relationships between the deformation com-
ponents €;; reflect the requirement that the medium be a
continuum, or that the solid has not been cracked and that
there are no discontinuities in the displacements. Mathe-
matically, these compatibility conditions require that
certain rather obvious relations among the components of
the deformation tensor exist. For example, if €, is
differentiated twice with respect to y, the result is
(0%u)/(dx dy?). Similarly, if €, is differentiated twice
with respect to x, we obtain (33v)/(dy 3x*). Now if e,y is
differentiated with respect to x and y, the result is
(1/2)[(@%u)/(dx 3y?) + (3%v)/(0x? dy)], which is one-half
the sum of 3%€xy/dy> and d%eyy/dx”. In all, there are
six compatibility equations relating the various components
of €;;. In Cartesian coordinates they are

Deyy =1(a|’ex‘x 3 azen)
axdy 2\9y% [ox?

A.4 STRESS--STRAIN RELATIONS

In the absence of plastic deformation, creep, or
temperature changes, the stress—strain relation is given by
the generalized form of Hooke’s law. For the elastic solid,
the six components of the stress tensor are related to the
six components of the deformation tensor by the linear
equations:

Oxx =Cpr1€xyx Y C12€yy T C13€,, ¥ C14€y,
+C|s€zx +0166xy

Oyy =Cp1€xx T C12€yy TC236,, +t Ca4€y,

+ ey s€,x * c?ﬁsxy

Oz = C31€xx * cBleyy + C33€;, + c34eyz

* C35€zx 17 c366xy

Oyz = Cq1€xx +c426yy + c43€zz+c44eyz

*Ca56x C46€xy

Ozx = Cs1€xx Cs2€yy +ce53€,, Cs4€y,

+tC55€zx T Csp€xy

Oxy = Ce1€xx % Ce2€yy +Cg3€,, cb‘leyz

(A.13)

T Cgs€zy t cééexy

The c;; values are the elastic moduli of the medium. Not all
36 of the coefficients in Eq. A.13 are independent. Because
the tensors oy and €; are symmetric, ¢;; = c;;, which
reduces the number of elastic constants to 21. This number
is reduced still further according to the symmetry of the
crystal structure of the solid; the greater the symmetry, the
fewer the constants. For crystals of the cubic system, there
are only three elastic constants. Finally, for materials that
are macroscopically isotropic (either because the substance
is noncrystalline or because the material is in polycrystal-
line form), only two constants remain. These two elastic
constants are called Lameé coefficients N and u. They
determine the stress—strain relation by

O;5 = 2u€; + A8 (A.14)

and

Here & is the volume dilatation, or the fractional change in
volume:

8=,y ey by (A.16)
The elastic constants are usually expressed in terms of
Young’s modulus E, the shear modulus G, and Poisson’s
ratio v, instead of the Lame coefficients. The relations
between the conventional elastic moduli and the Lame
coefficients are

_ (At 2y)
Betie (A.17)
G=pu (A.18)
e A
PR (A.19)

The values E, G, and » are not independent but are related
by

E
G"2(1+u]

(A.20)

Using Egs. A.17 to A.19 in Egs. A.14 and A.15 and solving
for the strains yields



1
€xx = E[oxx '—V{ny +0,,)]

1
€yy = E [oyy —Ploxx + 0,2)] (A.21)
1
€2 = E [02, —V(0xx + Oyy)]
1
(A.22)

Exy =2_Goxy Exz'2_Gsz Eyz-ﬁorz
In addition to the elongations caused by applied
stresses, a change in temperature produces normal strains
(but not shear strains) given by
(€ii) therma = @ AT (A.23)
where « is the coefficient of linear thermal expansion and
AT is the temperature rise with respect to a reference
temperature. The thermal component given by Eq. A.23 is
added to each of the normal strains given by Eq. A.21 to
produce the total strain.

Effects other than applied stress or temperature change
can contribute to the strain, In analyses of the performance
of reactor fuel elements, for example, the elongations of
Eq. A.21 are supplemented by contributions due to creep
and fission-product swelling. Like the thermal component
of the strain, these effects are accommodated into the
stress—strain relations by adding appropriate terms to the
right-hand sides of Eq. A.21. Relations such as Egs. A.21
and A.22 to which other sources of displacement have been
appended are known as constitutive relations.

A5 ELASTIC STRAIN ENERGY

The strain of a solid as a result of applied stresses
means that work has been done on the material. This work
is stored as internal energy, or elastic strain energy, in the
medium.

The strain energy can best be illustrated by considering
the one-dimensional analog of the solid, namely, the elastic
string. If sufficient force is applied to a string to extend its
length from x; to x;, the work done in the process is

*' 1
W-kf (x—xoldx-ik(x,—xo}’
‘ﬂ

Here k is the Hooke’s law constant of the string. The force
on the string in the final state is

F = k(xrp —Xg)
The work done can also be written as

1
W"iF(xF_xol

The elastic energy E,, stored in a unit length of string is
W/xo. The strain € of the string is (x; — X¢)/Xo. Dividing
the preceding formula by the initial length yields

E, == Fe (A.24)

2

In a three-dimensional elastic medium, the single
force F is replaced by the components of the stress tensor,
and the strain is represented by the deformation tensor.
The strain energy per unit volume is

E =l-(o Epx + 0 s A PO )
el = 9 (Oxx€xx vy€yy T 04,6, Oyxy€xy

+ 204,65, + 20y,€6y,) (A.25)
The elastic-energy density can also be written in terms of
the stresses alone by substituting Eq. A.21 into Eq. A.25:

2 x

1.3 2
Eel = EE{UM‘ *: Oyy + Ozz) — E (Uxxayy + Oxx0z2

1
< vauzz} < Q_G{O:V = U;z(z e a:z) (A.26)

For the case of a simple hydrostatic stress system
(Oxx = Oyy =0z; = 0 and Oxy = 0x; = 0y, = 0), Eq. A.26

reduces to
2
o
Ee = 5K (A.27)
where
E
K= m] (A.28)

is the bulk modulus, which is the reciprocal of the
coefficient of compressibility (see problem 1.5, Chap. 1).

A6 CYLINDRICAL COORDINATES

The behavior of a solid under applied stresses is
determined by simultaneous application of the equilibrium
conditions (Sec. A.1), the compatibility conditions
(Sec. A.3), and a stress—strain relation (Sec. A.4). Strains
and displacements are related by the components of the
deformation tensor (Sec. A.2).

The analysis up to this point has been conducted in
terms of Cartesian coordinates. However, many important
problems (e.g., the stresses around a dislocation or in a
reactor fuel element) are more conveniently treated in
cylindrical coordinates. For this purpose the four relations
listed in the preceding paragraph must be transformed from
rectangular to cylindrical coordinates.

Transformation of the stress—strain relation requires
only the replacement of x, y, and z in Egs. A.21 and A.22
by the radial, azimuthal, and axial coordinates r, #, and z.

Since the number of relevant strain components is
considerably reduced when simple shapes are treated, the
compatibility relations for cylindrical coordinates are best
determined from the set of strain components peculiar to
the problem at hand. The method of generating com-
patibility relations for cylindrical coordinates is analogous
to that used in Sec. A.3 for rectangular coordinates.



Transformation of the equilibrium relations and the
components of the deformation tensor is straightforward
but tedious. The results are

Equilibrium conditions:

%%(rorr)+%ag;3 -%oeg ng =0 (A.29)
%Qgg;ﬁ+@-§§£+%0,g +a—§—§-‘=0 (A.30)
%%{mn“%% +az%=0 (A.31)

Components of the deformation tensor:
Err =% €gg = %‘f _1;3_8%9 €y = % (A.32)
com 3152
€rz = €zr = %(%uz—'+ %‘f) (A.33)

Stress components and displacements in cylindrical
coordinates are shown in Fig. A.4. The 0-direction is
orthogonal to the radial and axial directions.

AT NOMENCLATURE :

[
¢;; = coefficients of generalized Hooke’s law (elastic
moduli)
E = Young’s modulus
E,; = elastic strain energy per unit volume
F = force
G = shear modulus
i,),k = unit vectors
K = bulk modulus
n = outward normal to surface
r,0 ,z = cylindrical coordinates
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Fig. A.4 Stress components and displacements in the
cylindrical coordinate system.

S;; = strain tensor
T = temperature
u,v,w = components of displacement vector
W = work
x,y,2z = Cartesian coordinates

Greek Letters
« = coefficient of linear thermal expansion
& = volume dilation
€;; = symmetric deformation tensor (strain components)

A\, u = Lamé constants for an isotropic solid
v = Poisson’s ratio

045 = stress tensor (stress components)

wy; = skew-symmetric rotation tensor
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