
*PP endix-Elasticity Theory 

A.1 EQUILIBRIUM CONDITIONS 

Figure A.1 shows an interior region of a solid bounded 
by the closed surface S. If the region contained in S is not 
accelerating, Newton's law of motion w u i m  that the 
components ol the forces on the region in each of the 
camdinate directions must be zero. If body forces such as 
grauity are n@ected, tbe only forces acting on the regloo 
are those aertea on the arfaceS by the material 
outsideS. 

BOUNDING 

SURFACE S 


Fig. A.1 Region ina solid. 

The forces on tbe surface S can b mpmen&d by a 
strm vector u, whicb bas componentsox, o,, and o= in the 
three dimtiom of a Carteaian d l n a t e  sy&m The 
magnitude and direetfoa of the Hress vector vary witb 
pasfUon on the Wupace S. Figure A.1 &om a mallelement 
of m a  dS of the d a c e  & The outward normal to the 
surlace 3 that pht is denoted by n. The stres3 owtor at 
the location ofdS WUin pnaal bave a amponeat along 
the mmd, whieb mpmmb a normal &ms, and corn-
gouanb tangent to the surface element, whjeh are shear 
stmm& 

The x-aomponent of the force on tbe element of 
mriace dS is u, dS.The x-componentof the net x force on 
the entire region e n c l o d  by the mrfaceS is the wr fm 
integral of a, dS. At equilibrium this In- and It s  
counterpuiz iu tbe y- and zdhctions must be m,w 

Toe x p m  u,, a,, and a= ina mom convenient manner, 
we consider the anface element dS in Fig. A.1 to be the 
oblique face of a very d tetrahedron, as sbown In 
Fig. A.2 The three m u W y  perpendicular plaues of the 
tetrahedron me& perpendicular bone of the coordhah 
axe%The components of o can be expresd in termsof the 
unit normal a and the tbrea stress vectors acting on the 
coordbte The M a r s  on each coordinate 
plane are W v e d  Into a aonnal ahss e q n e n t  (e.g., 
a, ,) and two shear componenb (eg., u,, and ox,) that act 
tangentially to the -rrlInate plane. 

The compollents of the st= =tors on the coordiarrte 
planes are written a8 o ~ ,where 1 refers to the coordinate 
plane in which the &macb (eq., ox,, a,,, and ox, all act 
on the plane perpendkular bthe x axis)and j refersto the 
direction in whlch the shm component ack 

The m of each of the cwrdinate plana in Fig A.2 b 
a projecbd a m  of the obllque Ieee dS.The area over wbkh 
o,,,u,,,ado,, act i sn- ids -n ,dS ,  wherei,j,andk 
are the unit wectonr ln the x, y, and z direction$ 
rebpdvely. The direction cashes of the wrfgce normalare 
& - a e  t ,n , -n*  j ,anda,-n* k. 

The tetrahedron of Fig. A.2 is in mwhanical equilib 
rium owing to the force on ih four faces, or the net force 

Fig. A.2 Diagram for relating surface foramta nine com-
ponents of &em tensor. 
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in coordinate direction bZESO. A d h g  to the sign 
coavmtlon,* force componen$ on the caordinab wa 
podthe i pinling towani tbene@d~e ooordhate axis 
under camidatloo. 'be xdhcUon forcebalance is 

u= dS -v,,n, dS -o,,n, d3-q,4 dS - 0 

If dS Ie canceld and the lsst tbree tenmarewrittea as the 
mdar product of a and the v&or whm components are 
a,,, a,., and a,,, the p m n g  Ionnula becanes 

ma- A.2 rdaW the C O r n ~ f ed the -treetor U 
to the unit ma! theorfentationd the mrhca 

Subsutution of &q. A.2 lub Eq.A.1 yietds equilibrium 
relations In bms of the stma tetlgdr ou. For the 
x-direetloa, the result Is 

Applying the diveqetbce theorem* to the surface 
In- in this equation ylelds the f I d  form of the 
equilibrium mlation: 

Similarly, for the y* and ~ d h t i o n s ,the equllbrium 
conditionsare 

and tbe nIne compow$of t h e ~ ~ o n t h e ~  
c o d h t e  p h e q  ucludly denoted coktldytmthesksss 
tenmr: 

An im-t relation between the offdisgonal e4e 
anen& of the brim ou can be obtained by applylng the 
condition that khe a* a w l d o n  of any element of 
twhrnse ism,Thb I d a  to the &lions 

Or,of the nine mnpllwbof tbe Wteam of Eq.A.3, 
only six are iadepndent; the tensDr isspmeWc 

*The a* 01 the &MSS component 0013 are determined 
by the following couwntion: mdder a vol- element 
h n d e d  by planm perpadfcular to the cosrrdhate ax-. If 
& o u h r d . o . r l o l o r o f t L . r ~ u d r r b h t h e  
direction of a pmithe ooordiaabeaxis, the oa am positive if 
l e  a& in the pw3the j d W m .  'l~m-anormal 

such w ox,, b positive it in bearha R.eorntreuthat 
act inward In a volume element (compmhn) am con-
nidered sl nagatiw -Commb, if tba outward 
no-1 02 L e  p h e  L in the diredon of a negative 
e t e axk, the qjam p i t h e  when the SWpets In 
the m a g a h  j dimdon. Agh,  the normal componenbare 
p d h  U they phca the volum elemant In t e e n .  The 
tbres coordinate plane of Fig.A2 are ourlaem with 
negative normPla, and the uu am pmitive a drawn on the 
fieurn. In a foma Mance on the element of Fig. AZ, 
thedore, the c~ntributioato tbe totalforce la thegolitive 
x-dimtlon due to the m t e phne w n d b h r  to 
the x axh iS-ox, W the area ofthe platre. 

A2 DISPLACEMENTS 

A body mbjected to strm will bmme d M o M  or 
shined as a dt.The stab of &rain is described by the 
dbqhcement vecbt, whkh coartecks a pint (x,y,zl in the 
umkrahed body with the IomUon tO which tbIs point has 
mmed (x + u, y * v, 2 * W) In the shined condition. The 
lellgths u, v, and w um the componentsof the disphcment 
vector; in g e d ,  they are hnctio~~sof psition in L e  
solid. 

The stma appIIed to the body is not relaw h the 
ahdute valua of the dkplament mnponwbK The fact 
that a body is made to u n d w  M a o n  or roEaUon 
b u s e  of an applied force, for example, h s  nothingto do 
wlth the material p r o m a  d the sdd .  Thep r o m  that 
is miqudy kbrminea by the appIied s m is the reiatfve 
d lephan t  of phb b the dkThe 80lH4ine 
in Fig. A.8 -ts a plane mh@ar ehmnt of 
dlm-m Sx and8g ht anumkmsdbody (forhplici$, 
only dimaslolls am considd). After gtress hasbeen 
applied, thamctangb 0 -rted into the dashed dourded 
@re. The arrowseomectbg tbe -em of theumhabd 
and Sh8inEld Q$lms am dhplaaementveetonr far thm 
four poioh The ymbr ofthe poiPt {x,y) in 
the l o w  hfbhand corm cmpomnb u a d  v. Since 
the dative motion d djmmt pin& is mall, the 
d-mt aomponeaEs at other locat fo~~~lean be a p  
g r o x i m r r t e d b y ' h y l o t ~ e x ~ a s a b a t t h e v a h ~ ~ a t  

e&t Iqy). Thus, L a  dtspbmat campmnta d the 

*For o v e w h  F denid ovew a mgbn ofvolume V nnd 

surface 8, the divergeaae theomm 4 


wbm, for Carhianmordinatq 



lower righthand corner (x +6x47) are u + (aulax) 6x md 
v + (avlax) 6 ~ .  

The repect of the dirphcanent field which is directly 
dated to the rpplkd sh?Mandthemrtedrlpmpdesir 
the co~lectknof d m i r e r  of the -nt, aulax, 
avlh,. ..,not the diqhemtnts u urd v proper. In three 
dimedons there are nine prtirl derhrrtives of the 
d i w e n t v e c t o r  components which cur be expremedan 
the rtnin tenaur: 

The mapom of the mlld to m applied farce is 
g o r d  bytheIrwtbrt~tmthestreatcmrorof&.AS 
and the rtnim ten#r of Eq.A.8. HOWWQ,the sh?M tewor 
contains only rix indepeadent componenb~,whereas the 
stnhr tenam of Eq.A 8  contrins nine independent qua-
titica Thus, the symmeCric sh?M t e m r  annot bet dtrectly 
relrted to the drain components u given h Eq.A.8. To 
c&cumvent thb dllileulty, we cm split the rbrin t a m r  Su 
into two perb: 

whmeu is the symmetric deloll~tion t e e  

duuis thebw-qmmetricrotation bmm: 

The phyaid meaning of the components of e~ md q~ 
in te!ms of the type of motion expdemxd by the body 
anbe seen from Fig. A.3. 

Conddar the bottom edge of the rectangle. OrigimIly 
its leqtb was 6x; under st- the cornm ( X J )  mwes 
r dirb.ncc u to the right, and the corner (x + 6xy) mwesr 
distance u +  (dulax) 6x to the right. The strain is r 
'Inctionrl &rage in Iength, or 

longa at ion in theX-II + (aulax) 6. -u --auIu 

Unit length 6x ax 

Tbbb the ex, component of the deformation tearor. Thus, 
the diagonal elemeats d Eq.A.10 r e p m t  theelon@#onr 
or nonnd strafruin the th* coordinate directions 

Fig. A.8 Deformation of a region of a solid (two-
dimensional). 

Tbe angles a and B in Fig.A.3 mpreeent the departure 
of the fou~ided 5gure fiwn its orSginal mctmgulushape. 
Since the strains uesmall, them angler ~8given by 

The sum a + 6 represents the depukue of the original mgle 
from 90°, which bdenoted u char  rMn, 

This sum is twice the ex, component of the deform& 
tion tensor. The other off.diuonrS elements inEq. A10 
repra#nt the rbsu cLninr in the mu. 

The angle of rotation of the plane !!gum in Fig.A S  Is 
the r v v  of theaqIesa and B, taking podtive rotation in 
the dockwbemat,or 

1
Rotation an r did body - (B-a) 



Thus the tensor oijof Eq. A. l l  represents pure rotation of 
the body. 

Only the deformation tensor eii is determined by the 
stress tensor and material properties. Hooke's law is an 
example of such a relation for elastic deformations. 

A.3 COMPATIBILITY RELATIONS 

Additional relationships between the deformation com- 
ponents eij reflect the requirement that the medium be a 
continuum, or that the solid has not been cracked and that 
there are no discontinuities in the displacements. Mathe- 
matically, these compatibility conditions require that 
certain rather obvious relations among the components of 
the deformation tensor exist. For example, if ex, is 
differentiated twice with respect to y, the result is 
(a3 u)/(ax ayz ). Similarly, if E is differentiated twice 

3ywith respect to x, we obtain (a v)/(ay axZ). Now if eXy is 
differentiated with respect to x and y, the result is 
(i/2)[(a3u)/(ax ayZ) + (a2v)/(axz ay)] , which is one-half 
the sum of a2~,, /ay2 and a2eYy /ax2. In all, there are 
six compatibility equations relating the various components 
of eil. In Cartesian coordinates they are 

A.4 STRESS--STRAIN RELATIONS 

In the absence of plastic deformation, creep, or 
temperature changes, the stressstrain relation is given by 
the generalized form of Hooke's law. For the elastic solid, 
the six components of the stress tensor are related t o  the 
six components of the deformation tensor by the linear 
equations: 

The cij values are the elastic moduli of the medium. Not all 
36 of the coefficients in Eq. A.13 are independent. Because 
the tensors oij and eij are symmetric, cij = cji, which 
reduces the number of elastic constants to 21. This number 
is reduced still further according to  the symmetry of the 
crystal structure of the solid; the greater the symmetry, the 
fewer the constants. For crystals of the cubic system, there 
are only three elastic constants. Finally, for materials that 
are macmscopically isotropic (either because the substance 
is noncrystalline or because the material is in polycrystal- 
line form), only two constants remain. These two elastic 
constants are called Larnk coefficients A and p. They 
determine the stress-strain relation by 

and 

Here 6 is the volume dilatation, or the fractional change in 
volume: 

6 = ex, + ey + E,, (A. 16) 

The elastic constants are usually expressed in terms of 
Young's modulus E, the shear modulus G, and Poisson's 
ratio v, instead of the Lame coefficients. The relations 
between the conventional elastic moduli and the Lame 
coefficients are 

The values E, G, and v are not independent but are related 
by 

Using Eqs. A.17 to A.19 in Eqs. A.14 and A.15 and solving 
for the strains yields 



In addition to the elongations caused by applied 
stnrsees, a change in temperature produces normal sMns 
(but not shear strains) given by 

where a is the coefficient of linear thermal expamion urd 
AT is the temperature rise with respect to a reference 
temperature. The thermal component given by Eq. A.23 is 
added to each of the normal stnins given by Eq. A.21 to 
produce the totd &rain. 

Effects other t h n  applied stmor temperature c h q e  
cm contribute to the strain. In mrlyaes of theperformmce 
of reactor fuel elements, lot example, the elo~lq.tions of 
Eq. A.21 are supplemented by contributions due to creep 
md  fidon-product meliing. L i b  the thermal component 
of the strain, theae effects are accommodated into ths 
skesmd@n relations by dding appropriate terms to the 
right-hand s i b  of Eq.A.21. Relations such rr Eqa A.21 
md  A.22 to which othw sourcesof dh1~I8ceanent h e  been 
appended am known rr conrlltutfuerdotfmr 

A5 ELASTIC STRAIN ENERGY 

The ctnin of a solid .(I a reault of applied stresm 
means Uut wark has been done on the mrtairl. Thh work 
is stored rcr intanrl e m ,  or ehrtfc s b a h  energy, in the 
medium. 
TheW n  energy can b a t  be fllurtnted by conridering 

the o n e d l n d d  mrlg of thed i d ,  namely, the elastic 
strlng. If sufndent force b applied to a stxing to exbnd i b  
koltbhomq, toq,thewortdoneinthepmcamir 

Here k is the Hooke's law constant of the string. The force 
onthestrAngintheilnrlst8teis 

The M c energy E . 1  *red in a unit length of f$rlng is 
W I q .  The W n  c of the &ing b (xt -%)I%. W i n g  
the prowdly formula by the initial lengtb yields 

In a threedimensional elastic medium, the single 
force F is r e p l a d  by the components of the &?emtensor, 
md  the s h i n  h represented by the deformation tensor. 
The&rainenergy per unit volume is 

&I 
1oxxexx + Oy yeyY + Qszezz + %x YEX y 

The elrstic-energy d d t y  cm also be written in t e r n  of 
the st- alone by substituting Eq. A.21 into Eq. A.25: 

For the cme of a simple hydrostatic strean system 
(0,. o ~ y y  - u Eq. A26-hZ UH1 uXy o ~ x z ~ ~ y z ~ O ) r  
reduces to 

where 

is the bulk modulus, which is the redprod of the 
coefficient of compmsibility (see problem 1.5, Chap. 1). 

A6 CYLINDRICALCOORDINATES 

The behavior of a solid under applied strrrrer h 
determined by simultaneous application of the equilibrium 
condi tions (Sec. Al) ,  the compatibility conditions 
(See. A3), md a -train relation (Sec. A4). Stnins 
and displacements up related by the components of the 
deformation tensor (See. A2). 

The mrlysis up to this point has been conducted in 
terms of Cutedm coordinate& However, mmy important 
problems (e.g., the stresses wound a djslocrtion or in a 
reactor fuel element) ue more conveniently treated ih 
cylindrical coordinates. For this purport the four relations 
listed in the preceding purqnph must be transformed from 
nckDgulu to cylindrical coordinates. 

'hursformrtion of the m t n i n  relation requires 
only the replacement of x, y, md z Jn Eqa A21 and A22 
by the radial, azimuthal, md uirl coordinates r, 8 ,  and z. 

Since the n-r of relevant shah components h 
considerably d u c e d  when simple shapes are trwted, the 
compatibility relation8 fox cylindrical coordimbr are best 
determined from the set of s h i n  componene peculiar to 
the problem at hand. The method of generating com- 
patibility relations for cylindrical coordinates b mrlogous 
to that used in Sec. A 3  for nctrnqulucoordinates. 



Transformation of relations and the the e q u ~ l l ~ n u m  
cpmponents of the deformation tensor is straightforward 
but tedious. The results are 

Equilibrium conditions: 

aa&a3?@&+a%Q+20r0 + A - 0  (A.30) 
r a8 ar  r az 

--i a l a ?  +a%=, (A.31) 
r ar ("rz) + r ae az 

Components of the deformation tensor: 

Stress components and displacements in cylindrical 
coordinates are shown in Fig. A.4. The 8-direction is 
orthogonal to the radial and axial directions. 

A.7 NOMENCLATURE 
4 

cij = coefficients of generalized Hooke's law (elastic 
moduli) 

E = Young's modulus 
Eel - elastic strain energy per unit volume 

F - force 
G - shear modulus 

i j,k = unit vectos 
K - bulk modulus 
n = outward normal to  surface 

r,e ,z - cylindrical coordinates 

Ur I 
I ELEMENT 1 to r 

Fig. A.4 Stress components and displacements in the 
cylindrical coordinate system. 

Sii = strain tensor 

T = temperature 


u,v,w - components of displacement vector 

W - work 


x,y,z = Cartesian coordinates 


Greek Letters . -
a = coefficient of linear thermal expansion 
6 - volume dilation 

eii = symmetric deformation tensor (strain components) 
X,p = Lamd constants for an isotropic solid 

v = Poisson's ratio 
aij = stress tensor (stress components) 
wu = skew-symmetric rotation tensor 
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