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Abstract—For the prediction of yield and failure of concrete under combined stress, a generalization of the
Mohr-Coulomb behavior is made in terms of the principal stress invariants. The gencralized yield and failure criteria
are developed to account for the two major sources of nonlinearity: the progressive cracking of concrete in tension,
and the nonlinear response of concrete under muitiaxial compression. Using these criteria. incremental stress-strain
relationships are established in suitable form for the nonlinear finite element analysis,

For the analysls of reinforced concrete members by finite clements, a method is mn-oduced by which the effect of
reinforcement is directly included. With this approach, the stress-strain laws for the constituent materials of
reinforced concrete are uncoupled permitfing efficient and convenient implementation of a.finite element program.
The applicability of the’ melhod is shown on sample reinforced concrete analysis problems

INTRODUCTION

Analytical procedures which may accurately determine
stress and deformation states in reinforced concrete
members are complicated due to many factors. Among
them are (1) the nonlinear load-deformation response of
concrete and difficulty in -forming suitable constitutive
relationships under combined stresses, (2) progressive
cracking of concrete under increasing load and the
complexity in formulating the failure behavior for various
stress states, (3) consideration of steei reinforcement and
the interaction between concrete and steel constituents
that form the composite system and (4) time dependent
effects such as creep and shrinkage of concrete.

Because of these complexities much of early analytical
studies on reinforced concrete were based on either
empirical approaches. using the results of large amounts
of experiments, or on simple analysis assumptions such as
the assumption of linear elastic behavior for the system.
Indeed in the past the limitations imposed by classical
analyﬁcal techniques have generally made such assump-
tions essential.

The development of numerical analysis methods, such
as the finite clement method(1,2], permits realistic
evaluation of internal stresses and displacements on
which the limit requirements may be based for improved
structural efficiency. Furthermore, such refined analytical
solutions help in understanding and interpreting the
observed behavior of structural elements from experni-
ments.

The concept of using the finite element method £or the -

analysis of concrete structures is rather new. In:recent
years there has been a growing interest in thie application
of the finite clement procedure to the analysis of
reinforced concrete structures, particularly with respect
to the influence of cracking on the résponse, Scordelis (3]
wrote a comprehensive survey of finite element analysis
of reinforced concrete structures. Muto ¢f al.[4] summar-
* ized further work in this area.

Presented at the Second National Symposium on Computer-
ized Structural Analysis and Design at the School of Engineering
and Applied Science, George Washington University, Washing-
ton, D.C., 29-31 March 1976. .

Success in developing finite element miethod for.
application to reinforced concrete[5-8) is closely linked to
the development of quantitative information{9-11] on the
load-deformation behavior of concrete. Formulation of
such information in a suitable form for use in the
analytical technique is essential. Despite intensive and
continued research no universally accepted constitutive
law exists which fully describes the concrete behavior in
combined stress conditions.

The present study undertakes to (1) develop and verify
the criteria for yielding and failure of concrete under
combined stress states. (2) provide analytical means for
direct modeling of reinforcement in the finite element
analysis and (3) show the applicability of the method on
sample reinforced concrete analysis problems.

The proposed yield and failure criteria account for the
progressive cracking of concrete in tension, and the
nonlinear response of concrete under multiaxial compres-
sion. These criteria are established witbout prior assump-
tions on the directional extent of cracking or yielding.
They are used to establish incremental ‘stress-strain

relationships for use in the nonlinear finite element

analysis. The verification of the yield and failure criteria
of concrete is based on the biaxial stress states. However,

‘the proposed invariant formulation for concrete behavior

is general, and can accomodate changes to account
for three-dimensional conditions upon availability of
experimental data.

GENERALIZED MORR-COULOMB BEHAVIOR

In the field of concrete research attempts have been
made to apply some of the classical failure theories to
concrete. 'l'hese théories were altered however, to
overcome some disadvantage or otherwise improve their
agréement with the phenomenological behavior of con-
crete. New failvore theories were therefore formed with
specnﬁc application to concrete such as internal friction- .
maximum stress theory[lZ], octahedral shear-normal
stress theory{13], Newman's two part criterion(14}.

The octahedral shear-normal stress theory is a general-
ization of Mohr-Coulomb (internal friction) theory in that
it includes the effect of the intermediate principal stress.
A further generalization of the Mohr-Coulomb behavior
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is possible by expressing the failure criterion in terms of
the principal stress invariants{15}:

fh,J)=0 ¢)]

where, using the summation convention
1
_J = Ty I = 5 S:)Si; (2)
and

: 1
'Su =0y —3 5.'.0‘11 3)
(8; is the Kronecker delta.)

The first invariant J; corresponds to the mean stress
component of the stress state. The second invariant /,is a

function of deviatoric stresses and hence excludes the .

effect of hydrostatic stress dependency. The most widely
used yield conditions for ductile materials exclude the
effect of the hydrostatic stress component and hence the
first invariant J;. However it is known that the mean
stress has a significant role in discontinuity behavior and
in eventual failure of concrete. Therefore, the first
invariant, J,, should be incorporated into the yielding and
failure criteria for concrete.

The third plasticity invariant J, has been shown by
Novozhilov[15] to represent the ratio of the mean
shearing stress to the maximum shearing stress. This
varies over very narrow limits. Therefore its effects on the
formulation of a yielding or failure law would be of
.. secondary importance. Consequently, it is possible for a
brittle material like concrete, to write a yield or failure law
in the form of eqn (1). The relationship expressed by eqn
(1) will be termed *'the generalized Mobr-Coulomb™ law.

PROPOSED FAILURE LAW FOR CONCRETE

On the basis of the generalized Mohr~Coulomb
behavior, together with the biaxial experimental
data{10, 11}, a failure law for concrete of the following
form is proposed

3n + VB3)Boo, +afit = o )
where 8, @ and o, are material constants. These constants
are 1o be determined from the test data. For the concrete
strength range used by Liu et al. {11} and Kupfer et al.[10],
B, a and o, constants were determined by a numerical
trial procedure. The best fit was found by

B=V03), a=1I5 and a=Pf3. (5

With these values, the failure Jaw eqn (4) becomes
3!1+PJ|+11215=P2I9- ©)

In a plane stress condition with principal stresses o, and
- ony, the relationship for failure envelope is

27Q2k* = k +2)o,* +45P(1 + kYo, ~ 5P*= 0 - @

where k = o/o,; k = 0 corresponds to the uniaxial case in
the first principal direction. This failure envelope is
plotted in a dimensionless principal stress coordinate
system in Fig. 1. Equation (7), as a whole, represents an
cllipse rotated and shifted with respect to \thc principal

L
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Fig. 1. Analytical and experimental failure envelopes for concrete.
, Kupfer and Hilsdorf[10}; ~~~-~, Liu, Nilson, and
Slate[11]; , Present formulation.

.+ \/(J)Ba'o,v + dlz = 0’0’
(B = V(D)oo = I/3Pa = 1I5)

axes. The resuiting envelope has a distorted shape with a
small tension-tension zome, a narrow tension-
compression zone and a highly expanded compression-
compression area.

In general, a satisfactory agreement is seen between the
test data and the assumed failure function. The compari-
son of the proposed failure envelope with the experiment
is made for three different principal stress zones:

(1) Compression-compression zone

The strength ratio o,/ P was calculated from eqn (7) for
various k values. A strength increase of 15, 30 and 16%
was obtained for the principal stress ratios of k =0.2,
k =0.5 and k = 1.0 respectively. These values are in good
agreement with the test data[10; 11]. In the analysis, this
portion of the failure envelope is assumed to determine 2
“crushing” type of failure of the material. Here, the term
“crushing” is used to express the failure of concrete
under compression stress in the plane of the material
model. , .

It is noted that, with sufficient experimental informa-
tion, a failure law based on critical local deformations {16]
or limit strains may be incorporated with eqn (6) to
constitute 2 dual fajlure criterion similar to that described
by Newman{14]. However, at the present time it appears
that the limiting strain or deformation proposals are not
general enough to provide a quantitatively adequate
criterion for formulation.

(2) Tension—compression zone

From Fig. 1t is seen that in tension-compression zone,
the analytical failure envelope deviates from the test data.
This deviation is pronounced in the o, tension direction
between the two extreme uniaxial cases. For the uniaxial
case k =0 two extreme values for o, are found; from eqn
(7) the first is o, = P (uniaxial compressive strength) and
the second is o,=0.10P (uniaxial tensile strength).
Therefore the extreme values are in agreement with the
actual tests. Consistent with the experiments, these two
extreme points are connected by a straight line for failure
in the tension-compression range (Fig. 2). It should be
noted that in this stress zone, with o tensile stresses of
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Fig. 2. Yield and failure criteria assumed in the analysis. ———,
Failure envelope; ~——~~-, Yield envelope.

sufficient magnitude as defined by that straight line,
cracking will occur. Subsequent loading, then. will nge
rise to the compressive stress, o, until crushing occurs in
the o, direction.

(3) Tension~tension zone

In the tension—tension zone the stress—strain behavior is
linear elastic and failure occurs by cracking. The
maximum stress (or strain) criterion is used to determine
cracking with uniaxial tensile strength (or strain) as the
limiting value. The tensile strength of concrete may vary
depending upon the concrete mixture. For the present
study 0.10P was assumed for tensile strength of concrete
and the resulting failure envelope is shown in Fig. 2.

PROPOSED YIELD LAW FOR CONCRETE

Up to about 30-35% of the compressive strength,
concrete under uniaxial compression behaves as linear
elastic. In biaxial loading, the elastic range in the
compression-compression zone expands due to the
microcracking confinement{7, 11] caused by lateral re-
straint. The magnitude of this expansion is a function of
the principal stress ratio in a similar way as in the strength
increase due to lateral confinement. The yield surface is
therefore obtained by simply scaling the failure envelope
down to a size where uniaxial yield point corresponds to
about one-third of the uniaxial compressive strength.

The general failure surface eqn (4) and eqn (6), with
given material constants, may easily be modified to
formulate the yield surface. This gives the following:

3h+al+ 5 =619 ®

where
F=P, =-;;P (compression), &> 0.

This yield surface is plotted in dimensionless principal
stress space on Fig. 2. )
As discussed in the previous section, for the tension-
compression zone, the envelope expressed by egn (8)
deviates slightly from the tests; the test data produces a
‘ \
L

relationship close to a straight line in this zone. However,
it will be assumed that the differences between eqn (8) and
the linear relanonshlp for this zone is not important. This
assumption is based on the fact that:

(1) for small tensile o, values, the effect of o on the

~ nonlinearity is negligible,

(2) for relatively large tensile o, values, the behavior is
governed by cracking in orthogonal planes parallel to the
compressive o, direction[11]. Therefore, with vanishing
a; values upon cracking, yield criterion reduces to a
one-dimensional yield formulation with nonlinearities
introduced in the compressive o, direction only.

In the present stndy; therefore, the yield condition
exprcssed by eqn (8) is used for both compression-
compression and the tension-compression zones. This
maintains the continuity of the yield surface.

In the tension-tension zone. comsistent with the
experiments([10, 17] a linear elastic behavior is assumed
with elastic slope equal to the initial tangent modulus in
uniaxial compression.

The utilization of stress invariants in formulating the

_yielding of concrete is particularly attractive because, as

mentioned earhcr, such formulation provides a physical
interpretation in terms of deviatoric and hydrostatic stress
component effects. Furthermore, a yield condition based
on the stress invariants permits convenient use of the
incremental plasticity approach for analyses with material
nonlinearities.

INCREMENTAL STRESS-STRAIN
RELATIONSHIPS FOR THE ELASTIC-PLASTIC
BEHAVIOR

In constructing the relationship between stress and
strain in the inelastic range for muitiaxial stress states,
one must define (a) the condition for yield. (b) the general
form of the desired stress-strain law and (c) a criterion for
work hardening. With these determined. the objective is
to establish the Prandti-Reuss relations in an incremental
form.

The yield condition eqn (8) can be rewritten as follows,

f=3Gh+d+ 15" =¢ ®

where & represents the “equivalent stress™ which is
defined to be able to extrapolate from a simple uniaxial
compression test into the multi-dimensional situation. The
initial yield occurs, when the equivalent stress, &, equals
the yield stress P, measored in the uniaxial compression
test. With loading continued, the subsequent yielding
occurs and plastic strains are introduced. For each value
of equivalent strain, &”, there corresponds an equivalent
stress. The equivalent strain can be directly obtained from
uniaxial compressive curve by subtracting the elastic
strains.
The slope of (7, €°) curve, H', is known as hardening
coefficient. From that curve one can write:
dé=H'dée". (10)
On the other hand, from eqn (9), the total differential df
can be written as:

[i]{d }+ da do

[af]{d }+3'I'do' =dg.

*
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Rearranging, and with the use of eqn (10) one obtains
figor = 2!_') ' dé.
. [W]{dv%( H' dé

For the flow rule of the multiaxial plasticity, usual
Prandtl-Reuss representation, with isotropic hardening is
employed. Isotropic hardening simply implies a uniform
.- expansion of the yield surface in all stresses. That is, by
the occurrence of plastic strains the yield surface grows in
size with the same shape as in the initial yield conditions.
The flow rule is:

(13)

(14

Lo

{de”}=de” {—ai}

Because the elastic components of strains are only
strains that can be associated with changes in stresses, the
increment of stress is related to the increment of elastic
strain by

{do}=[Cl{de} 15)

where [C] is the elastic strain to stress transformation
matrix. With elastic~plastic strain decomposition

{da}=[(Cl({de}-{de"] (16)
where

{de} = increment of total strain vector.

Substituting eqn (14) into eqn (16), and using eqn (13),
the required incremental stress-strain relation is obtained

aff) [

{da} = [C]"(l ;L) [af] [C]{_L} {de}
an
or
{do}=[D}{de} 1)

where [D] is the elastic-plastic incremental strain to
stress transformation matrix. It is seen that {D] is
symmetric. Note that the hardening coefficient multiplier
(1-3Ji/25) cannot be zero since the substitution of this
condition in eqn (8) resuits in a negative J, value. In the
case of perfect plasticity the hardening coefficient H' is
zero. As seen from eqn (17) this does not cause any
numerical difficulty since C is nonsingular.

. EFFECT OF MICROCRACK CONFINEMENT
ON ISOTROPIC WORK HARDENING

The stiffening effect of biaxiality (7, 11] on the deforma-
tion of concrete is represented by the elastic portion of
the constitutive relationship [C] in eqn (17). This is done
by introducing the directional equivalent tangent moduli
in principal stress space and incorporating them into {C].
In the elastic-plastic range, however, this plastic portion
of the conmstitutive matrix is based on H' hardening
cocfficients which are taken from uniaxial compression
tests.

The variation of the hardening coefficients as 2 function
of the principal stress ratio may be taken into considera-
tion in the incremental scheme. Such procedure would

\

A

utilize H; effective hardening coefficients for a given stress
state (Fig. 3). The procedure would involve simply
replacing H' cocfficients in eqn (17) by the H} effective
values for the stress combination corresponding to the load
increment considered.

Biaxial

Uniaxial

- F 4
Fig. 3. Effective hardening coefficients for biaxiality.

PROGRESSIVE CRACKLING

Internal stresses and deformations as well as external
deflections are highly affected by cracking. Cracks
develop first in relatively weak regions of the structural
system. As the external load is increased, new cracks
form in other regions as already developed cracks
propagate within the system. In order 1o incorporate the
phenomenon of progressive cracking in the analysis, as
cracks occur, the topology of the model should be
redefined and analysis should continue with this newly
modified system, This is done by using the clement
representation of cracks(18] in the model, and marching
out incrementally.

The stress is converted to principal stresses at various
angles to the global axes. If the stress state at an
integration point of an element meets the failure criteria.
then a crack is defined at that point, the crack being
oriented perpendicular to the principal tension direction.
To account for the presence of the crack in succeeding
increments of loading, the incremental constitutive matrix
{D]is modified by setting appropriate terms 10 zero such
that at that point the element cannot transmit tensile
stresses normal to the crack direction. Thus, the crack
propagation is established without prior assumptions on
the directional extent of cracking. Note that a proportion
of the shear modulus may be retained in {D] to account
for the aggregate interlocking.

EFFECT OF REINFORCEMENT

Since concrete is mostly used in conjunction with steel
reinforcement, an accurate analysis requires the consider-
ation of the members forming the composite structure. In
the present analysis of reinforced concrete members by
finite elements, a method has been introduced by which
the effect of reinforcement is directly included. In the
model, at each physical location of the structre, two
geometrically identical finite elements are used. The first
{concrete element), represents the concrete and is a *“full”
element. The second (rebar element) is basically an empty
biock element containing reinforcing bars running in
prescribed directions simulating the actual reinforcement
configuration (Fig. 4a). The strain compatibility between
steel and concrete is maintained by using the same shape
functions for both elements.

A
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- abe: Full {concrete) elerment

- a't'’c’ Rebar element

- Seven integration points on
the mdsurfoce

-~ Eleven integration stafions
through the thickness

Actug! bars Equivalent steel kayer
/ 7
= rL———R,-o
SRy B Y
i ..L.(. - Zs e
¢ 3 Rl
| Bl heediacond >

e e a4
sz@'o

(b) Equivolent reinforcement
Fig. 4. Reinforcement representation in the analytical model.

With this approach, the stress-strain laws for con-
stituent materials of reinforced concrete are uncoupled
permitting efficient and convenient implementation in a
finite element program. In addition, the method proves
convenient to investigate the relative contributions of the
concrete and steel components in resisting loads. The
approach is applicable to two and three-dimensional
models. Also, the reinforcement, in the rebar element. can
be represented as discrete bars or as smeared steel layers
(sheets) with equivalent thicknesses.

In the present work the application of the method is
demonstrated by the use of doubly-curved isoparametric
thin shell elements{19). The following assumptions are
made:

(1) The actual reinforcing bars are represented by
equivalent anisotropic steel layers by making appropriate
adjustments to [D] matrix for the rebar eiement. These
layers carry uniaxial stress only in the same direction as
the actual bars. Dowel action is neglectéd.

(2) Strain compatibility between steel and concrete is
maintained. This condition implies that there is a
sufficiently strong bond between the two materials so that
no relative movement of the steel and the surrounding
concrete can occur.

It is known that for plates and shells. piecewise
generalized stress-strain relations are defined by integrat-
ing through the thickness. For this analysis it is necessary
to use incremental stress-strain relationship of the type
expressed by eqn (18). For a full (concrete) element the
generalized stress-strain relationship is

HR
@ ] s )il o

where

dN = the increment of direct stress resuitant

dM = the increment of bending stress resuitant
de, = mid-wall component of strain increment
dk = bending component of the strain increment
H = the wall thickness.

.,\‘
\

153

At each integration point of the element the shell wall is
divided into a number of stations with constant intervals,
T, through the thickness (Fig. 4a). Using [D], the matrix
[M] is evaluated at the start of each increment and for
each of the stations.

For the rebar element, based on the actual area of
reinforcing bars, an equivalent thickness ¢, is calculated
for each layer through the thickness. For a steel layer with
anisotropic properties consistent with uniaxial condition
(to represent the reinforcing bars),

day =(R, D)) de.. (20)
Here R; = /T where 4 is the portion of the equivalent
steel area contributed to the ith integration station. Figure
4b shows the ratios &, for a rebar eiement with one jayer.
For each integration station the R; values are substituted
in [D] in the local coordinate system consistent with the
uniaxial reinforcement direction.

The generalized stress~strain relation at station i then

becomes
HiR
f [R.D: R.-D,h]{de}dh
RD} RDW]ldk) ™

-HR

(-

This integral is easily formed by numerical integration
using the constant interval T. Note that for integration
stations with no reinforcement contribution, the R,
multipliers will be zero.

(21).

SAMPLE PROBLEMS

The technique developed for the failure analysis of
reinforced concrete members has been implemented in a
nonlinear finite element program{20]. The applicability of
the method is demonstrated by two numerical examples
using the doubly-curved isoparametric thin shell ele-
ments. :

Deep beam example -

The model of a reinforced concrete deep beam selected
for analysis is shown in Fig. 5. This beam corresponds to
Leonhardt’s test specimen WT3 and is fully described
inf21]). The stress-strain curves of this concrete along
with the curve fit for this analysis, are shown in Fig. 6.
Uniaxial compressive strength of concrete was
302 kg/cm’. The modulus of rupture was 48 kg/em?.

The reinforcement was affected at the bottom portion
of the beam by two steel layers with equivalent
thicknesses f, =0.107cm on each face. The symmetry
permitted the study of only one half of the beam.

At about 37% of ultimate load yielding occured in the
support area. And at 55% of ultimate load first tension
cracks occurred at the bottom of the beam. As loads were
increased further yielding and cracking accurred as seen
in Fig. 7. The ultimate strength was reached at 120 tons
when material instability was obtained due to yielding and
cracking in the support areas.

Predictions of the analysis for the initiation and
propagation of cracks, and the deformation behavior are
in good agreement with experimental observation[21].
Analytical deflections and failure load are slightly smaller
than those from the tests (Fig. 8). (The predicted failure
load is about 7% less than the reported experimental
value.) The differences between the analytical and the
experimental results are within the scatter in the reported
test data. »
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Fig. 6. Stress—strain curve of concrete.

Cylindrical shell roof example

Figure 9 shows the model of the barrel vauit problem
studied. The uniaxial compressive strength of concrete
was 250 kg/cm®. The assumed compressive stress-strain
curve was similar to that shown in Fig. 6 with an initial
elastic modulus of 2.1x 10° kg/cm?. Meodulus of rupture
was assumed 1o be one-tenth of the compressive strength.
Steel reinforcements was assumed to be at 0.6%
distributed evenly between the two shell surfaces. The
reinforcements were assumed to have cquivalent thick-
nesses with uniform stiffness in both orthogonal direc-
tions with no shear effects.

A load of 0.015kg/cm® caused tensile failures at
elements 1, 8 and 16. (In the analysis half the elastic shear
modulus was retained for cracked elements to effect the
agregate interlocking in concrete.) The crack propagation
with increasing loads is shown in Fig. 10. The load
deflection results for the mid-point of the edge of the
shell, together with the elastic solution given by Scordelis
and Lo{22], is shown in Fig. 11. The effect of cracking is
highly pronounced in this curve showing severe non-
linearity from the early stages of loading. *
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Fig. 7. Predicted yielding and cracking of the beam.
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Fig. 8. Vertical deflections at the mid span of the beam. —A—A—,
Analysis; —3—{—, Test{21].
CONCLUSION

Using the finite element method of analysis, modified as

dictated by the particular properties of reinforced

concrete, an analytical model is given which permits the
detailed study of structural behavior through the entire
range of loading.

Adequate comparisons between analysis and tests are
achieved using the criterion for yielding and failure of
concrete, expressed in terms of stress invariants.

A}
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Fig. 9. The reinforced concrete roof model.

Cracking at outer concrete loyers

Cracking ot inmer concrete loyers

6,

() p=0015 kgrem?

{c) p=0050 kg/cm®

Fig. 10. Predicted cracking in the shell roof.
%

\

0060 -

0050}

Reference (22] -

Present andtysis

A
?

0010 -

] 20 a0 80 80 00 120

Fig. 11. Vertical deflection at mid point of the free edge.

This study suggests that the model provides a powerful
basis for analysis which promises to give new insight into
the performance of reinforced concrete.
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