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Particle Detection Principle

In order to detect a particle, it must interact with the
material of the detector and transfer energy in some
identifiable manner

Which particle can we identify?

Electrons, muons, pions, kaons, protons, neutrons, heavy
ions, and photons.



Photon Interaction

- Photo effect

- Used in various photo detectors to
create electrons on photo cathodes v+ atom — atom* + e
in vacuum and gas or at semi /\N\/\»@ @
conductors (surface)

» Photo multiplier tubes
* Photo diodes PROIPERET
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Compton effect
Y + nucleus — e*e + nucleus
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Pair production ’\‘\ .
- Initiates electromagnetlc shower in ="/
calorimeters, unwanted in tracking ‘\ ~———

detectors / @) "\“::—;-,:;;; o

y+e-osete+e +y e 3



Photon Interaction
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E apo = Atomic photoelectric effect (electron ejection, photon absorption)
3 e ORayleigh = Rayleigh (coherent) scattering-atom neither ionized nor excited
i OCompton = Incoherent scattering (Compton scattering off an electron)
8 Knue = Pair production, nuclear field
Ly k¢ = Pair production, electron field
0gd.r. = Photonuclear interactions, most notably the Giant Dipole Reso-
= S nance [4]. In these interactions, the target nucleus is broken up.
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Photon (Electron) Interaction

Main energy loss of high energy photons/electrons in matter

+ Pair production (y) and bremsstrahlung (e%)

Can characterize any material by its radiation length X

» 2 definitions (for electrons and photons)
- X, = length after an electron looses all but 1/e of its energy by brem.
- X =7/9 of mean free path length for pair production by the photon.
Very convienient quantity
* Rather than using thickness, density, material type ...

- Often expressed as % of X

* Tracking detectors should been transparent
- ATLAS and CMS trackers: 30%-230% X

« Calorimeters should have X0 as high as possible (20-30 X )



Photon (Electron) Interaction

——— Starting from the first electron / photon an electromagnetic shower
(cascade) develops in thick material

» Shower maximum (peak of energy deposition) is slightly energy
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Nuclear Interaction

Similar to radiation length but for strong interaction of
hadron with nucleus

- Development of hadronic cascade (shower)
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Hadronic showers have two main components
- Hadronic
» Charged hadrons, breaking up of nuclei,
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» Decay of neutral pions



Radiation Length

Gases, e.g. Argon ~100m
Light materials, e.g. Aluminum, Silican ~10cm
Heavier metals, e.g. Iron, Copper, Lead ~0.5 - 1.5¢cm
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Charged Particle Interaction

Multiple elastic scattering with atoms

- Mostly unwanted, changes initial direction, affects momentum
resolution

lonization

- Basic mechanism in tracking detectors
Photon radiation

- Bremsstrahlung

- Cerenkov radiation

- Transition radiation

Excitation

- Creation of scintillation light in calorimeters



Multiple Scattering

» After passing a layer of thickness L particle leaves with some
displacement r and some deflection angle

* Dominates momentum measurement for low momenta (later)
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lonization

* Primary number of ionizations per unit length is Poisson-
distributed

- Typically ~30 primary interactions / cm in gas @ 1 bar
* Primary electrons sometimes get large energies

Can lead to secondary ionization
Can even create visible secondary track (“delta-electron”)
Large fluctuations of energy loss by ionization

Total ionization =
primary +
secondary
ionization

Primary
ionization

Typically: total ionization = 3 X primary ionization
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lonization

- » Energy loss distribution

« Cluster size fluctuations cause large variations of energy loss
from patrticle to particle

- Landau distribution 'g .
» Large broad peak s

- Single or few el. cluster ot

« Looooong tail g NPT -SSP |

- Multiple el. cluster, & — electrons Sl
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Charge Particle Interaction

— — — « Energy loss function (Bethe-Bloch)

» Good description for pion from 6 MeV to 6 GeV

R n) n) ‘
dE . 9Z 1 [1. 2mec?f?y°Tmax o O(By)
——— =Kz — —In ) -5 - —
dr AR |2 I 2
' L L 1 T — T I
— + C -/ 1
= e | ¢ on Cu /
““m // \\ w on 1 //
Elm ”"_‘:- / <
.'_: / \ Bethe-Bloch Radiative // 3
= 4 Anderson- | / 3
¥ [ET lagiec \ / © Springer Nature Switzerland AG. All rights reserved. This
g =5 \ Eye [/ content is excluded from our Creative Commons license. For
= 024 A Radiative // Radiative 3 more information, see https://ocw.mit.edu/fairuse.
2 Mintmum  effects /g 1osses -
= Nl \fonization reach 1% i e
2 losses \ B BT et LS =
‘ SN R i Without &
1 1 1 1 ! ! L ! '
0001 001 01 1 10 & 1000 1000 104 105 106
3
1 1 L R | ! 1 ! J
0.1 ] 10 100, 1 10 00, I 10 100
[MeVid [GeViel [TeVid

Muon momentum

13



Charge Particle Interaction

- Energy loss function (Bethe-Bloch)
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Cherenkov Radiation

- Emitted when a charged particle passes through a dielectric
medium with speed greater than the speed of light in that
medium

- Classical picture: wave front or cone under Cerenkov angle
L-tan@

- Number of emitted photons per unit length and unit wave
length AN 1 &N
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Transition Radiation

- Predicted by Ginzburg and Franck in 1946

* Emission of photons when a charged particle
traverses through the boundary of two media
» Very simple picture
— Charged particle is polarizing medium
- Polarized medium is left behind when particle
leaves media and enters vacuum

- Formation of an electrical dipole with radiation
- Radiated energy per boundary

* Only very high energetic particles can radiate
significant energy.

* In our present energy range only electrons can
radiate transition radiation (particle ID!)

* Need many boundaries to get enough photons
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