Quantization of the elect r omagnetic field

The classical elect r omagnetic field

Max w ell Equations

G au ss’ s l a w

r · E =

ρ

ε 0

G au ss’ s l a w f or magn et i sm

r · B = 0

M ax w el l - F ar ad a y eq u at i on

r E = _ 1

c

B

t

( F ar ad a y s l a w of i n d u ct i on )

Amp er e’ s ci r cu i t al l a w

r B = µ 0 J + µ 0 ε 0

E

t

( wi t h M ax w el l s cor r ect i on )

Max w ell Equations

In empty space ( c = 1 / p µ 0 ε 0 )

c

@ t

G au ss’ s l a w r · E = 0 G au ss’ s l a w f or magn et i sm r · B = 0 M ax w el l - F ar ad a y eq u at i on r E = _ 1 @ B

c @ t

Amp er e’ s ci r cu i t al l a w r B = 1 @ E

W a v e Equations

2 E

2 B

1 @ 2 E

c 2 @ t 2 = 0

1 @ 2 B

c 2 @ t 2 = 0

Derivation of w a v e equations

Curl of Maxw ell Farad a y equation

r ( r E ) = _ 1 @ r B

c @ t

Use Amper e s L a w

and v ector identity r ( r ~ v ) = r ( r · ~ v ) - r 2 ~ v

( · E ) 2 E = 1 @ 1 @ E

c @ t c @ t

Derivation of w a v e equations

Use Gauss L a w

( · E ) 2 E = 1 @ 1 @ E

c @ t c @ t

Obtain w a v e equation

2

1 @ 2 E

E = c 2 @ t

W a v e equation

2 E

1 @ 2 E

c 2 @ t 2 = 0

Eigen value equation f r om separation of

variables:

E ( ~ x ,

t ) = X

m

f m ( t ) ~ u m ( ~ x )

2 2 d 2 f m 2 2

u m = k m u m

dt 2

+ c k m f m ( t ) = 0

Normal modes

{ u m } ar e eigenfunctions of the w a v e equation

Boundar y conditions (f r om Maxw ell eqs.)

r · u m = 0 , ~ n u m = 0

Or thonormality condition

Z ~ u m ( x ) ~ u n ( x ) d 3 x = 6 n,m

The y f orm a basis.

B- field

Electric field in { u m } basis:

E ( ~ x ,

t ) = X

m

f m ( t ) ~ u m ( ~ x )

Magnetic field in { u m } basis

B ( x, t ) = X h m ( t ) ( r u m ( x ) )

m

B- field solution

What ar e the coefficients h n ?

W e still need to satisfy Maxw ell equations:

1

× E = @ t B

c

X f n

( t ) × u n

= 1

c

X @ t

h n ( t ) × u n

n n

Solution: d h n = - cf

d t n

Eige n values of h n

Find equation f or h n onl y: Amper e s l a w

r B =

1 @ E

c @ t

X h ( t ) r ( r u

) = 1 X

d f n u

n n c d t n

n n

X h

2 u

= 1 X

d f n u

n n c d t n

n n

Eigen-equations

Eigen value equation f or h n

d 2 2 2

dt 2

h n ( t ) + c

k n h n ( t ) = 0

n

Eigen value equation f or f n

d 2 f n

dt 2

+ c 2 k 2 f n ( t ) = 0

E.M. field Hamiltonian

Z

T otal energ y:

H / 1

2

( E 2 + B 2 ) d 3 x

Substituting, integrating and using or thonormality conditions:

X

Z

1

H = 8 f n f m

n,m

u n ( x ) u m

( x ) d 3 x + h n h m Z

( r u n

) · ( r u m

) d 3 x

n n n

H = X

1 ( f 2 + k 2 h 2 ) 8

E.M. field as H. O .

Hamiltonian looks v er y similar to a sum of harmonic oscillators:

H = 1 X (p 2

+ ω 2 q 2 ) e H

= 1 X 1

(f 2

+ k 2 h 2 )

h. o. 2 n n n

n

e . m .

2 4 π n n n n

h n is derivativ e of f n

* identify with momentum

Quantized elect r omagnetic field

Operators

W e associate quantum operators to the coefficients f n , f n ! f ˆ n

W e write this operator in terms of annihilation and cr eation operators

f ˆ n

= p 2 πω

~ ( a

+ a n )

n

n

that cr eate or dest r o y one mode of the e .m. field

Operator fields

Electric field

n

E ( x, t ) = X p 2 ~ π ω n [ a

( t ) + a n ( t )] u n ( x )

n

Magnetic field

n

ω n

B ( x, t ) = X ic

n

r 2 π ~ [ a a

n

n

] × u

n

( x )

Hamiltonian

The Hamiltonian is then simpl y expr essed in terms of the a n operators

n

1

2

H = X ω n a a n +

n

The fr equencies ar e

ω n ( k ) = c | k n |

Gauges

Lor entz (scalar potential ϕ = 0 ) Coulomb (v ector potential r · A ~ =0 )

Ze r o- P oint Energ y

Field in c a vity

Field in a c a vity of v olume V = L x L y L z

Giv en the boundar y conditions,

the normal modes ar e:

u n, = A cos( k n,x r x ) s i n ( k n,y r y ) s i n ( k n,z r z )

with k n, =

n L

, n 2 N

P olarization

Because of the boundar y condition,

r · ~ u n = 0

the coefficients A m ust satisfy:

A x k n,x + A y k n,y + A z k n,z = 0

F or each set { n x , n y , n z } ther e ar e 2 solutions T w o polarizations per each mode

Electric field in c a vity

The electric field has a simple f orm

E ( x, t ) = X ( E + E )

=

e

=1 , 2

E

α

with

e ˆ α

X E n

a

n

i ( k n · r u t ) n

and E n =

~ ω n the field of one photon

r

2 ϵ 0 V

of fr equency ω n

Energ y density

E = h H i = 2

~ ω k a a k +

X k c 1

k =1

k

2

The Ze r o-point energ y density is then

2 k c 1

V 2

E 0 = X ~ ω k

k =1

Energ y density

If c a vity is large , w a v e v ector is almost contin uous

X

1

8

Z

d 3 k ( k )

k> 0

Ze r o-point energ y

Integrating o v er the positiv e octant

2 2 V 4

Z k c 1

E 0 = dk ~ k 3 c

V 3 8 k =0 2

setting a cutoff k c ,w e h a v e

c ~

Z k c

~ ck 4

E 0 = dk k 3 =

c

2 2 k =0 8 2

Ze r o-point energ y

Clip art image of a light bulb.

It s huge!

Cutoff at visible fr equency

A c = 2 /k = 0 . 4 10 - 6 m

Image by MIT OpenCourseWare.

2 . 7 10 8 J / m 3

@ 1m 23 J / m 3

But is it e v er seen?

Casimir Eff ect

Dutch theor etical p h ysicist Hendrik Casimir (1909–2000) first pr edicted in 1948 that when

tw o mir r ors face each other in vacuum, fluctuations in the vacuum e x er t “radiation pr essur e” on them

Casimir Eff ect

W L-R

W R

C a vity bounded b y L conductiv e walls

W L

Ad d a conductiv e plate

@ distance R R

Change in energ y is:

W = ( W R + W L R ) W L

Casimir eff ect

Each term is calculated f r om ze r o-point energ y

Contin uous a pp r o ximation is not valid if R is small

Thus the diff er ence W is not ze r o

2 L 2

W = ~ c 720 R 3

Casimir F o r ce

The diff er ence in energ y cor r esponds to an attractiv e f o r ce

@ W 2 L 2

F =

@ R

or a pr essur e

= ~ c 240 R 4

2 ~ c

P = 240 R 4

Casimir in MEMS

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .

Quantum Mechanical Actuation of Microelectromechanical Systems by the Casimir Force

H . B . Ch an , V . A . Aksyuk , R . N . Kleiman , D . J . Bishop and Fed er ic o Cap asso

Sc i e nc e 9 M a r c h 2 0 0 1 : Vo l . 2 9 1 no . 5 5 1 0 p p . 1 9 4 1 -1 9 4 4 33

MIT OpenCourseWare http://ocw.mit.edu

22.51 Quantum Theory of Radiation Interactions

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .