Quantization of the elect r omagnetic field
The classical elect r omagnetic field
Max w ell Equations
G au ss’ s l a w |
r · E = |
ρ ε 0 |
||
G au ss’ s l a w f or magn et i sm |
r · B = 0 |
|||
M ax w el l - F ar ad a y eq u at i on |
r ⇥ E = _ 1 c |
∂ B ∂ t |
||
( F ar ad a y ’ s l a w of i n d u ct i on ) |
||||
Amp er e’ s ci r cu i t al l a w |
r ⇥ B = µ 0 J + µ 0 ε 0 |
∂ E ∂ t |
||
( wi t h M ax w el l ’ s cor r ect i on ) |
Max w ell Equations
• In empty space ( c = 1 / p µ 0 ε 0 )
c
@ t
G au ss’ s l a w r · E = 0 G au ss’ s l a w f or magn et i sm r · B = 0 M ax w el l - F ar ad a y eq u at i on r ⇥ E = _ 1 @ B
c @ t
Amp er e’ s ci r cu i t al l a w r ⇥ B = 1 @ E
W a v e Equations
∇ 2 E —
∇ 2 B —
1 @ 2 E
c 2 @ t 2 = 0
1 @ 2 B
c 2 @ t 2 = 0
Derivation of w a v e equations
• Curl of Maxw ell Farad a y equation
r ⇥ ( r ⇥ E ) = _ 1 @ r ⇥ B
c @ t
• Use Amper e ’ s L a w
✓ ◆
and v ector identity r ⇥ ( r ⇥ ~ v ) = r ( r · ~ v ) - r 2 ~ v
∇ ( ∇ · E ) — ∇ 2 E = — 1 @ 1 @ E
c @ t c @ t
Derivation of w a v e equations
✓ ◆
• Use Gauss L a w
∇ ( ⇠ ∇ ⇠ · ⇠ E ) — ∇ 2 E = — 1 @ 1 @ E
c @ t c @ t
• Obtain w a v e equation
— ∇ 2
1 @ 2 E
E = — c 2 @ t
W a v e equation
∇ 2 E
1 @ 2 E
c 2 @ t 2 = 0
• Eigen value equation f r om separation of
variables:
E ( ~ x ,
t ) = X
m
f m ( t ) ~ u m ( ~ x )
2 2 d 2 f m 2 2
∇ u m = — k m u m
dt 2
+ c k m f m ( t ) = 0
Normal modes
• { u m } ar e eigenfunctions of the w a v e equation
• Boundar y conditions (f r om Maxw ell eqs.)
r · u m = 0 , ~ n ⇥ u m = 0
• Or thonormality condition
Z ~ u m ( x ) ~ u n ( x ) d 3 x = 6 n,m
• The y f orm a basis.
B- field
• Electric field in { u m } basis:
E ( ~ x ,
t ) = X
m
f m ( t ) ~ u m ( ~ x )
• Magnetic field in { u m } basis
B ( x, t ) = X h m ( t ) ( r ⇥ u m ( x ) )
m
B- field solution
• What ar e the coefficients h n ?
• W e still need to satisfy Maxw ell equations:
1
∇ × E = — @ t B →
c
X f n
( t ) ∇ × u n
= — 1
c
X @ t
h n ( t ) ∇ × u n
n n
• Solution: d h n = - cf
d t n
Eige n values of h n
• Find equation f or h n onl y: Amper e ’ s l a w
r ⇥ B =
1 @ E
c @ t
X h ( t ) r ⇥ ( r ⇥ u
) = 1 X
d f n u
n n c d t n
n n
→ — X h
∇ 2 u
= 1 X
d f n u
n n c d t n
n n
Eigen-equations
• Eigen value equation f or h n
d 2 2 2
dt 2
h n ( t ) + c
k n h n ( t ) = 0
n
• Eigen value equation f or f n
d 2 f n
dt 2
+ c 2 k 2 f n ( t ) = 0
E.M. field Hamiltonian
Z
• T otal energ y:
H / 1
2
( E 2 + B 2 ) d 3 x
• Substituting, integrating and using or thonormality conditions:
X
✓
Z
1
H = 8 ⇡ f n f m
n,m
u n ( x ) u m
( x ) d 3 x + h n h m Z
( r ⇥ u n
) · ( r ⇥ u m
) d 3 x ◆
n n n
H = X
1 ( f 2 + k 2 h 2 ) 8 ⇡
E.M. field as H. O .
• Hamiltonian looks v er y similar to a sum of harmonic oscillators:
H = 1 X (p 2
+ ω 2 q 2 ) e H
= 1 X 1
(f 2
+ k 2 h 2 )
h. o. 2 n n n
n
e . m .
2 4 π n n n n
• h n is derivativ e of f n
* identify with momentum
Quantized elect r omagnetic field
Operators
• W e associate quantum operators to the coefficients f n , f n ! f ˆ n
• W e write this operator in terms of annihilation and cr eation operators
f ˆ n
= p 2 πω
~ ( a †
+ a n )
n
n
that cr eate or dest r o y one mode of the e .m. field
Operator fields
• Electric field
n
E ( x, t ) = X p 2 ~ π ω n [ a †
( t ) + a n ( t )] u n ( x )
n
• Magnetic field
n
ω n
B ( x, t ) = X ic
n
r 2 π ~ [ a † — a
n
n
] ∇ × u
n
( x )
Hamiltonian
• The Hamiltonian is then simpl y expr essed in terms of the a n operators
n
◆
1
2
H = X ω n ✓ a † a n +
n
• The fr equencies ar e
ω n ( k ) = c | → k n |
Gauges
Lor entz (scalar potential ϕ = 0 ) Coulomb (v ector potential r · A ~ =0 )
Ze r o- P oint Energ y
Field in c a vity
• Field in a c a vity of v olume V = L x L y L z
• Giv en the boundar y conditions,
the normal modes ar e:
u n, ↵ = A ↵ cos( k n,x r x ) s i n ( k n,y r y ) s i n ( k n,z r z )
• with k n, ↵ =
n ↵ ⇡ L ↵
, n ↵ 2 N
P olarization
• Because of the boundar y condition,
r · ~ u n = 0
• the coefficients A m ust satisfy:
A x k n,x + A y k n,y + A z k n,z = 0
• F or each set { n x , n y , n z } ther e ar e 2 solutions T w o polarizations per each mode
Electric field in c a vity
• The electric field has a simple f orm
↵
E ( x, t ) = X ( E ↵ + E † )
=
e
↵ =1 , 2
E
α
• with
† e ˆ α
X E n
a
n
† i ( → k n · → r — u t ) n
• and E n =
~ ω n the field of one photon
r
2 ϵ 0 V
of fr equency ω n
Energ y density
E = h H i = 2
~ ω k a † a k +
X k c ⌧ 1
k =1
k
2
• The Ze r o-point energ y density is then
2 k c 1
V 2
E 0 = X ~ ω k
k =1
Energ y density
• If c a vity is large , w a v e v ector is almost contin uous
X |
1 8 |
Z |
d 3 k ⇢ ( k ) |
|
k> 0 |
Ze r o-point energ y
• Integrating o v er the positiv e octant
2 2 V 4 ⇡
Z k c 1
E 0 = dk ~ k 3 c
V ⇡ 3 8 k =0 2
• setting a cutoff k c ,w e h a v e
c ~
Z k c
~ ck 4
E 0 = dk k 3 =
c
2 ⇡ 2 k =0 8 ⇡ 2
Ze r o-point energ y
• It ’ s huge!
Cutoff at visible fr equency
A c = 2 ⇡ /k = 0 . 4 ⇥ 10 - 6 m
Image by MIT OpenCourseWare.
2 . 7 ⇥ 10 — 8 J / m 3
@ 1m 23 J / m 3
• But is it e v er seen?
Casimir Eff ect
• Dutch theor etical p h ysicist Hendrik Casimir (1909–2000) first pr edicted in 1948 that when
tw o mir r ors face each other in vacuum, fluctuations in the vacuum e x er t “radiation pr essur e” on them
Casimir Eff ect
W L-R
W R
• C a vity bounded b y L conductiv e walls
W L
• Ad d a conductiv e plate
@ distance R R
• Change in energ y is:
∆ W = ( W R + W L — R ) — W L
Casimir eff ect
• Each term is calculated f r om ze r o-point energ y
• Contin uous a pp r o ximation is not valid if R is small
• Thus the diff er ence ∆ W is not ze r o
⇡ 2 L 2
∆ W = — ~ c 720 R 3
Casimir F o r ce
• The diff er ence in energ y cor r esponds to an attractiv e f o r ce
@ ∆ W ⇡ 2 L 2
F = —
@ R
• or a pr essur e
= — ~ c 240 R 4
⇡ 2 ~ c
P = — 240 R 4
Casimir in MEMS
© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .
Quantum Mechanical Actuation of Microelectromechanical Systems by the Casimir Force
H . B . Ch an , V . A . Aksyuk , R . N . Kleiman , D . J . Bishop and Fed er ic o Cap asso
Sc i e nc e 9 M a r c h 2 0 0 1 : Vo l . 2 9 1 no . 5 5 1 0 p p . 1 9 4 1 -1 9 4 4 33
MIT OpenCourseWare http://ocw.mit.edu
22.51 Quantum Theory of Radiation Interactions
Fall 2012
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .