Neut r on Scattering

C r oss Section

in 7 easy steps

1. Scattering P r obability (TDPT)

2. Adiabatic Switching of P otential

3. Scattering matrix (integral o v er time)

4. T ransition matrix (cor r elation of e v ents)

5. Density of states

6. Incoming flux

7. Thermal a v erage

1. Scattering P r obability

P r obability of final scatter ed state , when e v olving under scattering interaction

P sca tt = | h f | U I ( t ) | i i | 2

Time-dependent per turbation theor y (Dyson expansion)

2. Adiabatic Switching

S catt ering M edium

Slo w s witching of potential

time [- , ] P ar ticle

V

t

V is a pp r o ximatel y constant

3. Scattering Matrix

P r opagator f or time t=- t= is called the scattering matrix

| h f | U I ( t i = -1 , t f = 1 ) | i i | 2 = | h f | S | i i | 2

S is expanded in series:

Z

f | S (1) | i = iV fi e i u fi t dt = 2 π i δ ( ω f ω i ) V f i

—∞

h f | S (2) | i i = h f |

X m

V | m i h m | V

! | i i

Z

dt 1 e i u fm t 1

—∞

t 1

Z

dt 2 e i u mi t 2

—∞

3. Scattering Matrix

Be car eful with integration ( ɛ ...)

First and second or der simplify to

h f | S (1) | i i = - 2 π i δ ( ω f - ω i ) h f | V | i i

h f | S (2) | i i = - 2 π i δ ( ω f

- ω i

) X h f | V | m i h m | V | i i

m ω i - ω m

4. T ransition Matrix

The scattering matrix is giv en b y the transition matrix

h f | S | i i = - 2 π i δ ( ω f - ω i ) h f | T | i i

which has the f ollo wing expansion

h f | T | i i = h f | V | i i + X

m

h f | V | m i h m | V | i i

ω i - ω m

+ X

m,n

V fm V mn V ni

( ω i - ω m )( ω i - ω n )

+ .. .

4. T ransition Matrix

Scattering p r obability

P s = 4 π 2 | h f | T | i i | 2 δ 2 ( ω f - ω i ) = 2 π t | h f | T | i i | 2 δ ( ω f - ω i )

(not w ell defined because of t →∞ )

Scattering rate

W S = 2 π | h f | T | i i | 2 δ ( ω f - ω i )

4. T ransition Matrix

T arget is left in one (of man y possible) state .

Radiation is left in a contin uum state

Separate the tw o subsystems

(no entanglement prior and after the

scattering e v ent)

and r e write the transition matrix

4. T ransition Matrix

T arget: | m k i , k

Radiation: | k i , ω k

Scattering rate W fi = 2 π | f | T | i | 2 δ ( E f E i )

g o back to definition, using explicit states

Z

W fi = | h m f , k f | T | m i , k i i | 2 e i ( u f + є f u i є i ) t

—∞

4. T ransition Matrix

W ork in Sch r odinger pict. f or radiation and Interaction pict. f or target:

t r t r

h m f , k f | T I I | m i , k i i = h m f , k f | T S S | m i , k i i e i ( u f - u i ) t e i ( є f - є i ) t

= h m f , k f | T I t S r

( t ) | m i , k i i e i ( u f - u i ) t

= h m f | T k f

,k i

( t ) | m i i e i ( u f - u i ) t

Scattering rate is then a cor r elation

1 Z 1

W fi = e i ( u f - u i ) t h m i | T

~ 2 -1

k f ,k i

( 0) | m f i h m f | T k f

,k i

( t ) | m i i

N O TE: Time e v olution of target onl y

(e .g. lattice n uclei vibration)

5. Density of states

n y

n

n x

# of states P k n ( E k ) R d 3 n ( E )

dn

Plane w a v e in a cubic c a vity

2 L

3

k x = n x ! d 3 n = d 3 k L 2

L

3

( E ) dE d = ( k ) d 3 k = k 2 dk d

2

5. Density of states

Photons, k = E / ~ c !

d k d E

= 1 / ~ c

ρ ( E ) = 2 = 2

k

L 3 E 2 L 3 ω 2

2 π ~ 3 c 3 2 π ~ c 3

Massiv e par ticles, E = ~ 2 k 2

2 m

( E ) =

2 ~ 2

=

L 3

k L 3 p 2 mE

2 ~ 3

6. Incoming Flux

# scatter er per unit ar ea and time

< = # = v , since t = L /v , A = L 2 A t L 3

L

Photons, < = c /L 3

Massiv e par ticles, Φ =

~ k mL 3

7. Thermal A v erage

A v erage o v er initial state of target

W S ( i ! + d , E + dE ) = ( E ) X P i X W f i

i f

Scattering C r oss Section

d 2 σ 1

d Λ dE = ~ 2

f

X

Z

D T

if

dte i u fi t

—∞

( 0) T fi ( t )

ρ ( E )

E

th Φ

Neut r ons

Using < inc and ( E ) f or massiv e par ticles, the scattering c r oss section is:

=

f

e i u fi t

T

( 0) T f i ( t )

d 2 σ 1 mL 3 2 k Z 1 D E

d d ω 2 π 2 π ~ 2 k i -1

if

Neut r ons

Evaluate T f or neut r ons, with states

| k i,f i !

k ( r ) = e ik · r /L 3 / 2

w e obtain T k f k i ( t, Q ) with Q = k f k i

h k f | T ( t, r ) | k i i =

d 3 r ( r ) T ( r, t )

L

k f

Z

3

k i ( r )

1

= L 3

d 3 r e iQ · r T ( r, t )

Z

L 3

Neut r on T ransition Matrix

W e still need to ta k e the expectation value with r espect to the target states,

T = 1 Z d 3 r e iQ · r h m | T ( r, t ) | m i

L

fi 3 f i L 3

F ermi P otential

T is an expansion of the interaction potential, her e the n uclear potential

anal yze at least first or de r ...

F ermi P otential

Nuclear potential is v er y st r ong (V 0 ~30MeV)

And shor t range (r 0 ~ 2fm)

Not g ood f or per turbation theor y!

F ermi a pp r o ximation

What is impor tant is the p r oduct

0

a a V 0 r 3

(a = scattering length) if k r 0 1

F ermi P otential

Replace n uclear potential with

w eak, long range pseudo-potential

neutr on wa v efunction

Still, shor t range compar ed to w a v elength

Delta-function potential!

2 π ~ 2

V ( r ) = a δ ( r ) µ

Scattering Length

Fr ee scattering length a,

2 π ~ 2 2 π ~ 2

V ( r ) = a δ ( r ) ! b δ ( r )

µ m n

bound scattering length b (include inf o about isotope and spin)

b = m n a A + 1 a

µ A

(r educed mass: µ =

M m n )

M + m n

T ransition Matrix

T o first or de r , the transition matrix is just

the potential

T = 1 Z d 3 r e iQ · r h m | V ( r, t ) | m i

L

fi 3 f i L 3

Using the n uclear potential f or a n ucleus at a position R, w e h a v e

1 Z

3 iQ · r

2 π ~ 2 2 π ~ 2

iQ · R ( t )

L

T fi = 3 d r e

L 3

b ( R ) δ ( R ) T ( r, t ) =

m n

b ( R ) e

m n

T ransition Matrix

T o first or de r , f or man y scatter at position r i

T f i ( t ) = m b i e

i

2 ~ 2 X iQ · r

n

( t )

i

d σ 1 k f Z

The scattering c r oss section becomes

2 X D E

= e i u fi t b A b j e iQ · r ` (0) e iQ · r j ( t )

d d ω 2 π k i

A ,j th

Scattering Lengths

The bound scattering length depends on isotope and spin

W e need to ta k e the a v erage b ` b j ! b ` b j

- j = ` , b ` b j = b 2

- j / = ` , b b = 2

` j b

Finall y , b ` b j = b 2 δ j, ` + b 2 (1 δ j, ` )

Coher ent/Incoher ent scattering length:

2 2 2 2 2

Scattering lengths

Cohe r ent scattering length

b c = b

Cor r elations in scattering e v ents f r om the same target

(scale-length o v er which the incoming radiation is coher ent in a QM sense)

Simple a v erage o v er isotopes and spins

Scattering Lengths

Incohe r ent scattering length

i

b 2 = ( b 2

2

- b ) c j, `

Cor r elation of scattering e v ents betw een

differ ent targets

V ariance of the scattering length o v er spin states and isotopes

C r oss-section

d σ 1 k f Z

A v eraging o v er the scattering lenght

D E

2 X

b A b j e ` e j

= e i u fi t iQ · r (0) iQ · r ( t )

d d ω 2 π k i

A ,j th

w e obtain S S ( Q, ω )

d σ 1 k f Z

2

= e i u fi t

X ( b 2 + b 2 )

D e iQ · r ` (0) e iQ · r j ( t ) E

d d ω 2 π k i —∞

A ,j

i c th

S ( Q, ω )

C r oss-section

Using the dynamic structur e factors, w e can write the c r oss section as

d 2 σ

d d ω

= N k f

k i

2 S s ( Q, ω ) + b 2 S ( Q, ω )

b

c

i

These functions enca psulate the target characteristics, or mor e pr ecisel y , the target

r esponse to a radiation of energ y and w a v e v ector Q ~

Structu r e Factors

Self dynamic structur e factor (incoher ent)

S S ( Q, ω ) = e i u fi t

e iQ · r ` (0) e iQ · r ` ( t )

1 Z * 1 X +

2 π

—∞

N

A

Full dynamic structur e factor (coher ent)

1 Z

1

S ( Q, ω ) = e i u fi t

* 1 X

e - iQ · r ` (0) e iQ · r j ( t ) +

2 π -1

N

A ,j

Intermediate Scattering Functions

Self dynamic structur e factor

S S ( Q, ω ) = e i u fi t F s ( Q, t )

1 Z

2 π —∞ * X +

F s ( Q, t ) =

Full dynamic structur e factor

1 e iQ · r ` (0) e iQ · r ` ( t ) N

`

1 Z

S ( Q, ω ) = e i u fi t F ( Q, t ) 2 π —∞

N

F ( Q, t ) = * 1 X e iQ · r j (0) e iQ · r ` ( t ) +

` ,j

These functions ar e the F ourier transf orm (wr t time) of the structur e factors

The y contain inf ormation about the target and its time cor r elation.

Examples:

- Lattice vibrations (phonons)

- Liquid/Gas diffusion

Cr ystal Lattice

P osition in F ( Q, t ) D P ` ,j e iQ · x j (0) e iQ · x ` ( t ) E

is the n uclear lattice position

q

Model as 1D quantum harmonic oscillator

position: x =

~

2 M u 0

( a + a )

Hamiltonian (phonons)

2

0

H = p 2 + M u x 2 = ~ ω ( a a + 1 )

2 M 2 0 2

Cr ystal Lattice

Assumption: 1 D , 1 isotope , 1 spin state

Self-intermediate structur e function:

F S ( Q, t ) = e iQ · x (0) e iQ · x ( t )

Note: [ x ( 0) , x ( t )] = /

0 (but it s a n umber)

Use BCH f orm ula: e A e B

= e A + B e [ A,B ]

. . .

F S ( Q, T ) = e e

2

D iQ · [ x (0) x ( t )] + 1 [ Q · x (0) ,Q · x ( t )] E

Simplify using (Bloch) f orm ula:

D e α a + β a E

= e h ( α a + β a ) 2 i

w e get F S

2

with

( Q, t ) = e - Q 2 h D x 2 i / 2 e + 1 [ Q · x (0) ,Q · x ( t ) ]

x 2 = 2 x 2 + 2 h x ( 0) x ( t ) i - h [ x ( 0) , x ( t )] i

F S ( Q, t ) = e Q 2 ( x 2 e Q 2 ( x (0) x ( t )

The cr ystal is usuall y in a thermal state .

Calculate F(Q,t) f or a n umber state and then ta k e a thermal a v erage o v er

Boltzman distribution

h n | x 2 | n i =

h n | x ( 0) x ( t ) | n i =

~ (2 n + 1)

2 M u

0

2 M u 0

~ [2 n cos( ω 0 t ) + e i u 0 t ]

Replace n ! h n i

Phonon Expansion

Lo w temperatur e h n i 0

x 2 = ~

h x ( 0) x ( t ) i =

~ e i u 0 t

2 M u 0 2 M u 0

Expand in series of

~ 2 Q 2

2 M

/ ( ~ ω 0

) = E

ki n

/E bind

and calculate the dynamic structur e factor

S S ( Q, ω ) = F ( F ( Q, t )

S S ( Q, ω ) e

Q 2

~ Q 2 h

2 M u 0

0

~ Q 2

2 M u

0

δ ( ω ) +

δ ( ω ω 0 )+

1 ~ Q 2 2

2 2 M u 0

δ ( ω 2 ω

) + . . .

Phonon Expansion

Neut r on/q.h. o . energ y exchange

δ ( ω ) +

δ ( ω ω 0 )+

Zer o-phonon = no excitation one-phonon = 1 quantum of Energ y (elastic scattering)

S S ( Q, ω ) e

Q 2

~ Q 2 h

2 M u 0

~ Q 2

2 M u

0

1 ~ Q 2 2

2 2 M u 0

δ ( ω 2 ω

) + . . .

0

tw o-phonons = 2 quantum of Energ y

n-p honons

High T emperatu r e

W e find a “classical” r esult, wher e

S s

F cl = F [ G cl ( x, t ) ]

s

and the space-time self cor r elation

(classical) function

G cl ( x, t ) dx is the

p r obability of finding the h. o . at x, at time t, if it was at the origin at time t=0.

F cl ( Q, T ) = e ( k b T Q 2 /M u 2 )[1 cos( u 0 t ) ]

z 0

MIT OpenCourseWare http://ocw.mit.edu

22.51 Quantum Theory of Radiation Interactions

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .