Neut r on Scattering
C r oss Section
in 7 easy steps
1. Scattering P r obability (TDPT)
2. Adiabatic Switching of P otential
3. Scattering matrix (integral o v er time)
4. T ransition matrix (cor r elation of e v ents)
5. Density of states
6. Incoming flux
7. Thermal a v erage
1. Scattering P r obability
• P r obability of final scatter ed state , when e v olving under scattering interaction
P sca tt = | h f | U I ( t ) | i i | 2
• Time-dependent per turbation theor y (Dyson expansion)
2. Adiabatic Switching
S catt ering M edium
• Slo w s witching of potential
➞ time ∈ [- ∞ , ∞ ] P ar ticle
V
t
• V is a pp r o ximatel y constant
3. Scattering Matrix
• P r opagator f or time t=- ∞ → t= ∞ is called the scattering matrix
| h f | U I ( t i = -1 , t f = 1 ) | i i | 2 = | h f | S | i i | 2
• S is expanded in series:
Z ∞
⟨ f | S (1) | i ⟩ = — iV fi e i u fi t dt = — 2 π i δ ( ω f — ω i ) V f i
—∞
h f | S (2) | i i = — h f |
X m
V | m i h m | V
! | i i
∞
Z
dt 1 e i u fm t 1
—∞
t 1
Z
dt 2 e i u mi t 2
—∞
3. Scattering Matrix
• Be car eful with integration ( ɛ ...)
• First and second or der simplify to
h f | S (1) | i i = - 2 π i δ ( ω f - ω i ) h f | V | i i
h f | S (2) | i i = - 2 π i δ ( ω f
- ω i
) X h f | V | m i h m | V | i i
m ω i - ω m
4. T ransition Matrix
• The scattering matrix is giv en b y the transition matrix
h f | S | i i = - 2 π i δ ( ω f - ω i ) h f | T | i i
• which has the f ollo wing expansion
h f | T | i i = h f | V | i i + X
m
h f | V | m i h m | V | i i
ω i - ω m
+ X
m,n
V fm V mn V ni
( ω i - ω m )( ω i - ω n )
+ .. .
4. T ransition Matrix
• Scattering p r obability
P s = 4 π 2 | h f | T | i i | 2 δ 2 ( ω f - ω i ) = 2 π t | h f | T | i i | 2 δ ( ω f - ω i )
(not w ell defined because of t →∞ )
• Scattering rate
W S = 2 π | h f | T | i i | 2 δ ( ω f - ω i )
4. T ransition Matrix
• T arget is left in one (of man y possible) state .
• Radiation is left in a contin uum state
• Separate the tw o subsystems
(no entanglement prior and after the
scattering e v ent)
and r e write the transition matrix
4. T ransition Matrix
• T arget: | m k i , ✏ k
• Radiation: | k i , ω k
• Scattering rate W fi = 2 π | ⟨ f | T | i ⟩ | 2 δ ( E f — E i )
g o back to definition, using explicit states
Z ∞
W fi = | h m f , k f | T | m i , k i i | 2 e i ( u f + є f — u i — є i ) t
—∞
4. T ransition Matrix
• W ork in Sch r odinger pict. f or radiation and Interaction pict. f or target:
t r t r
h m f , k f | T I I | m i , k i i = h m f , k f | T S S | m i , k i i e i ( u f - u i ) t e i ( є f - є i ) t
= h m f , k f | T I t S r
( t ) | m i , k i i e i ( u f - u i ) t
= h m f | T k f
,k i
( t ) | m i i e i ( u f - u i ) t
• Scattering rate is then a cor r elation
1 Z 1 †
W fi = e i ( u f - u i ) t h m i | T
~ 2 -1
k f ,k i
( 0) | m f i h m f | T k f
,k i
( t ) | m i i
N O TE: Time e v olution of target onl y
(e .g. lattice n uclei vibration)
5. Density of states
n y
n
n x
• # of states P k n ( E k ) ⇡ R d 3 n ( E )
dn
• Plane w a v e in a cubic c a vity
2 ⇡ ✓ L ◆
3
k x = n x ! d 3 n = d 3 k L 2 ⇡
✓ L ◆
3
⇢ ( E ) dE d ⌦ = ⇢ ( k ) d 3 k = k 2 dk d ⌦
2 ⇡
5. Density of states
• Photons, k = E / ~ c !
d k d E
= 1 / ~ c
ρ ( E ) = 2 = 2
k
✓ L ◆ 3 E 2 ✓ L ◆ 3 ω 2
2 π ~ 3 c 3 2 π ~ c 3
•
Massiv e par ticles, E = ~ 2 k 2
2 m
⇢ ( E ) =
2 ⇡ ~ 2
=
✓ L ◆ 3
k ✓ L ◆ 3 p 2 mE
2 ⇡ ~ 3
6. Incoming Flux
• # scatter er per unit ar ea and time
< = # = v , since t = L /v , A = L 2 A t L 3
L
• Photons, < = c /L 3
• Massiv e par ticles, Φ =
~ k mL 3
7. Thermal A v erage
• A v erage o v er initial state of target
W S ( i ! ⌦ + d ⌦ , E + dE ) = ⇢ ( E ) X P i X W f i
i f
• Scattering C r oss Section
d 2 σ 1
d Λ dE = ~ 2
f
∞
X
Z
D T
if
dte i u fi t
—∞
† ( 0) T fi ( t )
ρ ( E )
E
th Φ
Neut r ons
• Using < inc and ⇢ ( E ) f or massiv e par ticles, the scattering c r oss section is:
=
f
e i u fi t
T †
( 0) T f i ( t )
d 2 σ 1 ✓ mL 3 ◆ 2 k Z 1 D E
d ⌦ d ω 2 π 2 π ~ 2 k i -1
if
Neut r ons
• Evaluate T f or neut r ons, with states
| k i,f i !
k ( r ) = e ik · r /L 3 / 2
• w e obtain T k f k i ( t, Q ) with Q = k f — k i
h k f | T ( t, r ) | k i i =
d 3 r ⇤ ( r ) T ( r, t )
L
k f
Z
3
k i ( r )
1
= L 3
d 3 r e iQ · r T ( r, t )
Z
L 3
Neut r on T ransition Matrix
• W e still need to ta k e the expectation value with r espect to the target states,
T = 1 Z d 3 r e iQ · r h m | T ( r, t ) | m i
L
fi 3 f i L 3
F ermi P otential
• T is an expansion of the interaction potential, her e the n uclear potential
• anal yze at least first or de r ...
F ermi P otential
• Nuclear potential is v er y st r ong (V 0 ~30MeV)
• And shor t range (r 0 ~ 2fm)
• Not g ood f or per turbation theor y!
• F ermi a pp r o ximation
• What is impor tant is the p r oduct
0
a a V 0 r 3
(a = scattering length) if k r 0 ⌧ 1
F ermi P otential
• Replace n uclear potential with
w eak, long range pseudo-potential
neutr on wa v efunction
• Still, shor t range compar ed to w a v elength
• Delta-function potential!
2 π ~ 2
V ( r ) = a δ ( r ) µ
Scattering Length
• Fr ee scattering length a,
2 π ~ 2 2 π ~ 2
V ( r ) = a δ ( r ) ! b δ ( r )
µ m n
• bound scattering length b (include inf o about isotope and spin)
b = m n a ⇡ A + 1 a
µ A
(r educed mass: µ =
M m n )
M + m n
T ransition Matrix
• T o first or de r , the transition matrix is just
the potential
T = 1 Z d 3 r e iQ · r h m | V ( r, t ) | m i
L
fi 3 f i L 3
• Using the n uclear potential f or a n ucleus at a position R, w e h a v e
1 Z
3 iQ · r
2 π ~ 2 2 π ~ 2
iQ · R ( t )
L
T fi = 3 d r e
L 3
b ( R ) δ ( R ) T ( r, t ) =
m n
b ( R ) e
m n
T ransition Matrix
• T o first or de r , f or man y scatter at position r i
T f i ( t ) = m b i e
i
2 ⇡ ~ 2 X iQ · r
n
( t )
i
d σ 1 k f Z
• The scattering c r oss section becomes
2 ∞ X D E
= e i u fi t b A b j e — iQ · r ` (0) e iQ · r j ( t )
d ⌦ d ω 2 π k i
— ∞ A ,j th
Scattering Lengths
• The bound scattering length depends on isotope and spin
• W e need to ta k e the a v erage b ` b j ! b ` b j
- j = ` , b ` b j = b 2
- j / = ` , b b = 2
` j b
• Finall y , b ` b j = b 2 δ j, ` + b 2 (1 — δ j, ` )
• Coher ent/Incoher ent scattering length:
2 2 2 2 2
Scattering lengths
• Cohe r ent scattering length
b c = b
• Cor r elations in scattering e v ents f r om the same target
(scale-length o v er which the incoming radiation is coher ent in a QM sense)
• Simple a v erage o v er isotopes and spins
Scattering Lengths
• Incohe r ent scattering length
i
b 2 = ( b 2
2
- b ) c j, `
• Cor r elation of scattering e v ents betw een
differ ent targets
• V ariance of the scattering length o v er spin states and isotopes
C r oss-section
d σ 1 k f Z
• A v eraging o v er the scattering lenght
D E
2 ∞ X
b A b j e ` e j
= e i u fi t — iQ · r (0) iQ · r ( t )
d ⌦ d ω 2 π k i
— ∞ A ,j th
w e obtain S S ( Q, ω )
d σ 1 k f Z
2 ∞
= e i u fi t
X ( b 2 + b 2 )
D e — iQ · r ` (0) e iQ · r j ( t ) E
d ⌦ d ω 2 π k i —∞
A ,j
i c th
S ( Q, ω )
C r oss-section
• Using the dynamic structur e factors, w e can write the c r oss section as
d 2 σ
d ⌦ d ω
= N k f ⇥
k i
2 S s ( Q, ω ) + b 2 S ( Q, ω ) ⇤
b
c
i
• These functions enca psulate the target characteristics, or mor e pr ecisel y , the target
r esponse to a radiation of energ y and w a v e v ector Q ~
Structu r e Factors
• Self dynamic structur e factor (incoher ent)
S S ( Q, ω ) = e i u fi t
e — iQ · r ` (0) e iQ · r ` ( t )
1 Z ∞ * 1 X +
2 π
—∞
N
A
• Full dynamic structur e factor (coher ent)
1 Z
1
S ( Q, ω ) = e i u fi t
* 1 X
e - iQ · r ` (0) e iQ · r j ( t ) +
2 π -1
N
A ,j
Intermediate Scattering Functions
• Self dynamic structur e factor
S S ( Q, ω ) = e i u fi t F s ( Q, t )
1 Z ∞
2 π —∞ * X +
F s ( Q, t ) =
Full dynamic structur e factor
•
1 e — iQ · r ` (0) e iQ · r ` ( t ) N
`
1 Z ∞
S ( Q, ω ) = e i u fi t F ( Q, t ) 2 π —∞
N
F ( Q, t ) = * 1 X e — iQ · r j (0) e iQ · r ` ( t ) +
` ,j
• These functions ar e the F ourier transf orm (wr t time) of the structur e factors
• The y contain inf ormation about the target and its time cor r elation.
• Examples:
- Lattice vibrations (phonons)
- Liquid/Gas diffusion
Cr ystal Lattice
• P osition in F ( Q, t ) ⇠ D P ` ,j e — iQ · x j (0) e iQ · x ` ( t ) E
is the n uclear lattice position
q
• Model as 1D quantum harmonic oscillator
• position: x =
~
2 M u 0
( a + a † )
• Hamiltonian (phonons)
2
0
H = p 2 + M u x 2 = ~ ω ( a † a + 1 )
2 M 2 0 2
Cr ystal Lattice
• Assumption: 1 D , 1 isotope , 1 spin state
➞ Self-intermediate structur e function:
F S ( Q, t ) = ⌦ e — iQ · x (0) e iQ · x ( t ) ↵
• Note: [ x ( 0) , x ( t )] = /
0 (but it ’ s a n umber)
• Use BCH f orm ula: e A e B
= e A + B e [ A,B ]
. . .
F S ( Q, T ) = e e
2
D — iQ · [ x (0) — x ( t )] + 1 [ Q · x (0) ,Q · x ( t )] E
• Simplify using (Bloch) f orm ula:
D e α a + β a † E
= e h ( α a + β a † ) 2 i
• w e get F S
2
• with
( Q, t ) = e - Q 2 h D x 2 i / 2 e + 1 [ Q · x (0) ,Q · x ( t ) ]
⌦ ∆ x 2 ↵ = 2 ⌦ x 2 ↵ + 2 h x ( 0) x ( t ) i - h [ x ( 0) , x ( t )] i
F S ( Q, t ) = e — Q 2 ( x 2 ⟩ e — Q 2 ( x (0) x ( t ) ⟩
• The cr ystal is usuall y in a thermal state .
• Calculate F(Q,t) f or a n umber state and then ta k e a thermal a v erage o v er
Boltzman distribution
h n | x 2 | n i =
h n | x ( 0) x ( t ) | n i =
~ (2 n + 1)
2 M u
0
2 M u 0
~ [2 n cos( ω 0 t ) + e i u 0 t ]
• Replace n ! h n i
Phonon Expansion
• Lo w temperatur e h n i ⇡ 0
⌦ x 2 ↵ = ~
h x ( 0) x ( t ) i =
~ e i u 0 t
2 M u 0 2 M u 0
• Expand in series of
~ 2 Q 2
2 M
/ ( ~ ω 0
) = E
ki n
/E bind
and calculate the dynamic structur e factor
S S ( Q, ω ) = F ( F ( Q, t )
S S ( Q, ω ) ≈ e
— Q 2
~ Q 2 h
2 M u 0
0
~ Q 2
2 M u
0
δ ( ω ) +
δ ( ω — ω 0 )+
1 ⇣ ~ Q 2 ⌘ 2
2 2 M u 0
δ ( ω — 2 ω
) + . . .
Phonon Expansion
• Neut r on/q.h. o . energ y exchange
δ ( ω ) +
δ ( ω — ω 0 )+
Zer o-phonon = no excitation one-phonon = 1 quantum of Energ y (elastic scattering)
S S ( Q, ω ) ≈ e
— Q 2
~ Q 2 h
2 M u 0
~ Q 2
2 M u
0
1 ⇣ ~ Q 2 ⌘ 2
2 2 M u 0
δ ( ω — 2 ω
) + . . .
0
tw o-phonons = 2 quantum of Energ y
n-p honons
High T emperatu r e
• W e find a “classical” r esult, wher e
S s
F cl = F [ G cl ( x, t ) ]
s
and the space-time self cor r elation
(classical) function
G cl ( x, t ) dx is the
p r obability of finding the h. o . at x, at time t, if it was at the origin at time t=0.
F cl ( Q, T ) = e — ( k b T Q 2 /M u 2 )[1 — cos( u 0 t ) ]
z 0
MIT OpenCourseWare http://ocw.mit.edu
22.51 Quantum Theory of Radiation Interactions
Fall 2012
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .