EPR
parad o x
Bell inequalities
1
Can quantum-mechanical description of p h ysical r eality be conside r ed complete?
• A. Einstein, B. P odolsk y , and N. Rosen, P h ys. Re v . 47, 777 - 780 (1935)
In a complete theor y ther e is an element cor r esponding to each element of r ealit y . A sufficient condition f or the r eality of a ph ysical quantity is the possibility of pr edicting it with cer taint y , without disturbing the system. In quantum mechanics in the case of tw o ph ysical quantities described b y non- comm uting operators, the kno wledge of one pr ecludes the kno wledge of the othe r . Then either (1) the description of r eality giv en b y the wa v e function in quantum mechanics is not complete or (2) these tw o quantities cannot ha v e sim ultaneous r ealit y . Consideration of the pr oblem of making pr edictions concerning a system on the basis of measur ements made on another system that had pr e viousl y interacted with it leads to the r esult that if (1) is false then (2) is also false . One is thus led to conclude that the description of r eality as giv en b y a wa v e function is not complete .
Abstract © American Physical Society. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .
2
Entangled Pair
i | i | i
• Pr epar e the state = ( 01 + 10 ) / p 2 of tw o identical par ticles (spins)
• Par ticles mo v e to Alice and Bob , that measur e their angular momentum S z , obtaining either +1 or -1
A B
• Experiment r epeated man y times: perf ect anti- cor r elation
3
Entangled Pair
i | i | i
• Pr epar e the state = ( 01 + 10 ) / p 2 of tw o identical par ticles (spins)
• Par ticles mo v e to Alice and Bob , that measur e their angular momentum S z , obtaining either +1 or -1
A B
• Experiment r epeated man y times: perf ect anti- cor r elation
4
Entangled Pair
i | i | i
• Pr epar e the state = ( 01 + 10 ) / p 2 of tw o identical par ticles (spins)
• Par ticles mo v e to Alice and Bob , that measur e their angular momentum S z , obtaining either +1 or -1
A B
• Experiment r epeated man y times: perf ect anti- cor r elation
5
Entangled Pair
• Pr epar e the state i = ( | 01 i + | 10 i ) / p 2 of tw o
identical par ticles (spins)
• Par ticles mo v e to Alice and Bob , that measur e their angular momentum S z , obtaining either +1 or -1
A B
• Experiment r epeated man y times: perf ect anti- cor r elation
6
Entangled Pair
• Pr epar e the state i = ( | 01 i + | 10 i ) / p 2 of tw o
identical par ticles (spins)
• Par ticles mo v e to Alice and Bob , that measur e their angular momentum S z , obtaining either +1 or -1
A B
• Experiment r epeated man y times: perf ect anti- cor r elation
7
Entangled Pair
• Pr epar e the state i = ( | 01 i + | 10 i ) / p 2 of tw o
identical par ticles (spins)
• Par ticles mo v e to Alice and Bob , that measur e their angular momentum S z , obtaining either +1 or -1
A B
• Experiment r epeated man y times: perf ect anti- cor r elation
8
Entangled Pair
• Pr epar e the state i = ( | 01 i + | 10 i ) / p 2 of tw o
identical par ticles (spins)
• Par ticles mo v e to Alice and Bob , that measur e their angular momentum S z , obtaining either +1 or -1
A B
• Experiment r epeated man y times: perf ect anti- cor r elation
9
Entangled Pair
• Pr epar e the state i = ( | 01 i + | 10 i ) / p 2 of tw o
identical par ticles (spins)
• Par ticles mo v e to Alice and Bob , that measur e their angular momentum S z , obtaining either +1 or -1
A B
• Experiment r epeated man y times: perf ect anti- cor r elation
10
Entangled Pair
• Pr epar e the state i = ( | 01 i + | 10 i ) / p 2 of tw o
identical par ticles (spins)
• Par ticles mo v e to Alice and Bob , that measur e their angular momentum S z , obtaining either +1 or -1
A B
• Experiment r epeated man y times: perf ect anti- cor r elation
11
Entangled Pair
• Pr epar e the state i = ( | 01 i + | 10 i ) / p 2 of tw o
identical par ticles (spins)
• Par ticles mo v e to Alice and Bob , that measur e their angular momentum S z , obtaining either +1 or -1
A B
• Experiment r epeated man y times: perf ect anti- cor r elation
12
Entangled Pair
• Pr epar e the state i = ( | 01 i + | 10 i ) / p 2 of tw o
identical par ticles (spins)
• Par ticles mo v e to Alice and Bob , that measur e their angular momentum S z , obtaining either +1 or -1
A B
• Experiment r epeated man y times: perf ect anti- cor r elation
13
Entangled Pair
• Pr epar e the state i = ( | 01 i + | 10 i ) / p 2 of tw o
identical par ticles (spins)
• Par ticles mo v e to Alice and Bob , that measur e their angular momentum S z , obtaining either +1 or -1
A B
• Experiment r epeated man y times: perf ect anti- cor r elation
14
Entangled Pair
• Pr epar e the state i = ( | 01 i + | 10 i ) / p 2 of tw o
identical par ticles (spins)
• Par ticles mo v e to Alice and Bob , that measur e their angular momentum S z , obtaining either +1 or -1
A B
• Experiment r epeated man y times: perf ect anti- cor r elation
15
Entangled Pair
• Pr epar e the state i = ( | 01 i + | 10 i ) / p 2 of tw o
identical par ticles (spins)
• Par ticles mo v e to Alice and Bob , that measur e their angular momentum S z , obtaining either +1 or -1
A B
• Experiment r epeated man y times: perf ect anti- cor r elation
16
Entangled Pair
• Pr epar e the state i = ( | 01 i + | 10 i ) / p 2 of tw o
identical par ticles (spins)
• Par ticles mo v e to Alice and Bob , that measur e their angular momentum S z , obtaining either +1 or -1
A B
• Experiment r epeated man y times: perf ect anti- cor r elation
17
T r a v eler pair
• Anti-cor r elation also in “classical” experiment
• T w o tr a v elers with balls inside tw o luggages
Image s by MIT OpenCourseWare.
• Alice and Bob check the luggages: perf ect anti- cor r elation
18
T r a v eler pair
• Anti-cor r elation also in “classical” experiment
• T w o tr a v elers with balls inside tw o luggages
•
Image s by MIT OpenCourseWare.
Alice and Bob check the luggages: perf ect anti- cor r elation
19
T w o p r oper ties of balls
• No w assume that the balls can be r ed or gr een and matte or shin y .
• Anti-cor r elation also f or the pr oper ty of gloss
20
T w o a x es
• In QM, the 2 pr oper ties ar e the spin along 2 a x es:
( x σ z
• W e can r e write the state in ( x basis,
i = ( | 01 i + | 10 i ) / p 2 = ( | + -i + | - + i ) / p 2
• thus measuring ( x Alice and Bob obtain same anti-cor r elation
21
Classical h ypothesis
Realism & Locality
22
Realism
• At pr eparation, par ticles a and b possess both the pr oper ties
(color and gloss f or the classical balls
σ x , σ z , with σ x,z = ±1 f or the quantum par ticles)
23
Locality
• When I measur e par ticle a , I cannot modify instantaneousl y the r esult of measuring par ticle b .
Ther e is no action at distance (faster than light)
24
EPR Parado x
• An y complete description of the w orld m ust r espect local r ealism
• Local r ealism is violated b y quantum mechanics
➜ Quantum mechanism is not a complete description of the w orld
25
Bell Inequalities
Quantitativ e measur e of violation of local r ealism
26
Cor r elation f or a n y a x es
• Assume tw o spins in Bell State ✓
i = ( | 01 i + | 10 i ) / p 2
z
• Alice measur e a A obtaining a , while Bob measur e
a B = cos ✓a B + s i n ✓a B getting b ∈ {+1,-1} .
b z x
• What is the cor r elation
h ab i = h a A a B i ?
z b
27
Some calculations...
h a A a B i 1 A B A B
z b =
2 ( h 01 | a z a b | 01 i + h 01 | a z a b | 10 i +
+ h 10 | a A a B | 01 i + h 10 | a A a B | 10 i )
z b z b
= 1 h 0 | a A | 0 ih 1 | a B | 1 i + h 0 | a A | 1 ih 1 | a B | 0 i +
2 z b z b
+ h 1 | a A | 1 ih 0 | a B | 0 i + h 1 | a A | 0 ih 0 | a B | 1 i
z b z b
= 1 h 1 | a B | 1 i - h 0 | a B | 0 i = - cos ✓
2 b b
28
Bell experiment
• Alice measur es along either a or a’
a
• Bob measur es along either b or b’
a’
✓
a b b = cos ✓ a c a 0 = cos ¢ b b’
b c b 0 = cos ¢ a d 0 b 0 = cos ✓
29
Cor r elations
• The cor r elations among the measur ements ar e
then:
h ab i = h a 0 b 0 i = - cos ✓
h a 0 b i = - cos( ✓ - ¢ ) h ab 0 i = - cos( ✓ + ¢ )
• W e want to calculate 〈 S 〉
h S i = h ab i + h a 0 b 0 i + h ab 0 i - h a 0 b i
30
Locality + Realism
• At each measur ement, I should be able to calculate the value of the operator :
S k = ( σ A σ B ) k + ( σ A σ B ) k + ( σ A σ B ) k — ( σ A σ B ) k
a b a 0 b 0
a b 0
a 0 b
X
k
• The expectation value is then h S i = l i m 1 S
N !1 N
k
31
Realism
• Ev en if I measur e the spin along a , the pr oper ty
spin along a’ is re a l (that is, it has a definite value)
32
Calculate outcome of S k
• Re write as
S k = ( A ( ( B + ( B ) k - ( A ( ( B - ( B ) k
a b b 0 a 0 b b 0
Outcomes of a B
± a B
ar e { 0 , +2 , - 2 }
• b b 0
If
a B
+ a B
is ± 2
,
a B -
a B
is 0 and vice-v ersa
• b b 0 b b 0
a
• Then S k = ± 2 a a or S k = ± 2 a 0
33
Locality
• The fact of measuring b or b’ does not change the value of a or a’ (that h a v e outcomes +/-1 ). Then:
S k = ± 2
• The expectation value of S is then
— 2 < ⟨ S ⟩ < +2
34
Bell inequality
• If | h S i | > 2 at least one of the tw o h ypothesis (locality or r ealism) is not true
35
Bell inequality
• Choose a=z; a’=x; b=-x+z; b’=x+z;
ab i = h a 0 b 0 i = - cos ✓ ab = - 1 / p 2 b
ab 0 i = - cos ✓ ab 0 = - 1 / p 2
a 0 b i = - cos ✓ a 0 b = + 1 / p 2
• W e obtain
a b’
a’
h S i = h ab i + h a 0
b 0 i + h ab 0
i - h a
4
0
b i = - p 2
= - 2 p 2 < - 2
36
Ref e r ences
• J. S. Bell, On the Einstein P odolsk y Rosen P ar ado x , P h ysics 1, 195-200 (1964)
• Alain Aspect, Philippe Grangie r , and Gerar d Roge r , P h ys. Re v . Lett. 47, 460 - 463 (1981)
Exper imental T ests of Realistic Local Theor ies via Bell's Theor em
37
State: inf ormatio or object?
• No-g o theor em: if the quantum state mer el y r epr esents inf ormation about the r eal ph ysical state of a system, then experimental pr edictions ar e
obtained that contradict those of quantum theor y .
38
Non- Locality
• If locality is lost, can it be used f or action at distance?
• T elepor tation?
39
Quantum T elepor tation
• Alice has a qubit in a state
| i = α | 0 i + β | 1 i
but does not kno w an ything about it.
• As obser ving the state destr o ys it, Alice can ’ t measur e the qubit and tell the ans w er to Bob
Alice ca n ’t giv e the state to Bob b y classical mea ns.
• No-cloning theor em, no quantum channel.
40
Entangled pair
• Assume Alice and Bob shar e a pair of qubits that is pr epar ed in an entangled state .
• Alice and Bob each h a v e access to one Qubit.
| ϕ i =
1
p 2 | 0 i A | 0 i B +
1
p 2 | 1 i A | 1 i B
• The full-state then is the pr oduct of Alice ’ s Qubit and the shar ed r egister :
1 1 1 1
| i | ϕ i = α p 2 | 000 i + p 2 β | 100 i + p 2 α | 011 i + p 2 β
| 111 i
41
Comm unication Scheme
Classical Channel
Alice
(Internet)
Copied State
| i = α | 0 i + β | 1 i
Initial State
| i = α | 0 i + β | 1 i
Bob
Entangled Sour ce
1 1
| ϕ i =
p 2 | 0 i A | 0 i B + p 2 | 1 i A | 1 i B
42
Alg orithm
• Alice then perf orms a CN O T on her half of the r egiste r , using her m yster y bit as the contr ol.
1 1 1 1
| ϕ i | i = α p 2 | 000 i + p 2 β | 110 i + p 2 α | 011 i + p 2 β | 101 i
• She then applies the Hadamard gate t o | i A
1
| ϕ i | i =
2
1
+
2
| 00 i ( α | 0 i + β | 1 i ) +
| 10 i ( α | 0 i — β | 1 i ) +
1
| 01 i ( α | 1 i + β | 0 i )
2
1
| 11 i ( α | 1 i — β | 0 i )
2
43
Measu r ement
• Alice then measur es her 2 qubits and tells Bob
• Note that this destr o ys her original state .
• The outcome of this obser vation is unpr edictable .
• If Alice measur es 00, then Bob has the original state . Otherwise , Bob has some other state .
• The state is kno wn , so Bob can perf orm a kno wn operation to r etrie v e the original state
σ x
1 1 1 | 00 i ( α | 0 i + β | 1 i ) + 1 | 01 i ( α | 1 i + β | 0 i )
2 2
1 1
+ | 10 i ( α | 0 i — β | 1 i ) + | 11 i ( α | 1 i — β | 0 i )
σ z 2 2 σ y
44
Quantum T elepor tation
• This pr ocedur e r elied on superposition and entanglement.
• It was necessar y to account f or the pr obabilistic natur e of QM b y giving Bob par ticular actions to ta k e , depending on the (unpr edictable) outcome of the obser vation.
• Theor y: C . H. Bennett, G. Brassar d, C . Crépeau, R. J ozsa, A. P er es, W . K. W ootters, T elepor ting an Unkno wn Quantum State via Dual Classical and Einstein-P odolsky- Rosen Channels, Ph ys. Re v . Lett. 70, 1895-1899 (1993)
• Experiments:
D . Bouwmeeste r , .., A. Zeilinge r , Experimental Quantum T elepor tation, Natur e 390, 575 (1997)
M. D . Bar r ett, …., D . J. Wineland, Deterministic Quantum T elepor tation of Atomic Qubits, Natur e 429, 737 (2004).
S. Olmschenk, … C . Monr oe , Quantum T elepor tation betw een Distant Matter Qubits, Science 323, 486 (2009)
45
MIT OpenCourseWare http://ocw.mit.edu
22.51 Quantum Theory of Radiation Interactions
Fall 2012
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .