2 . M a th e m a ti ca l F o r m a l i s m o f Q u a n tu m M e ch a n i cs
2 . 1 L i n e ar v e c t o r s an d H i l b e r t s p ac e
2 . 2 . 1 H e r mi t i a n o p e r a t o r s
2 . 2 . 2 O p e r a t o r s a n d t h e i r p r o p e r t i e s
2 . 2 . 3 F u n c t i o n s o f o p e r a t o r s
Q u a n t u m m e c h a n ic s is a lin e a r t h e o r y , a n d s o it is n a t u r a l t h a t v e c t o r s p a c e s p la y a n im p o r t a n t r o le in it . A p h y s ic a l s t a t e is r e p r e s e n t e d m a t h e m a t ic a lly b y a v e c t o r in a H ilb e r t s p a c e ( t h a t is , v e c t o r s p a c e s o n w h ic h a p o s it iv e - d e fi n it e s c a la r p r o d u c t is d e fi n e d ) ; t h is is c a lle d t h e s p a c e o f s t a t e s . P h y s ic a l p r o p e r t ie s lik e m o m e n t u m , p o s it io n , e n e r g y , a n d s o o n w ill b e r e p r e s e n t e d b y o p e r a t o r s a c t in g in t h e s p a c e o f s t a t e s . W e w ill in t r o d u c e t h e e s s e n t ia l p r o p e r t ie s o f H ilb e r t s p a c e s , m a in ly in t h e c a s e o f fi n it e d im e n s io n , a s t h e m a t h e m a t ic a l t h e o r y o f H ilb e r t s p a c e s o f in fi n it e d im e n s io n is m u c h m o r e c o m p lic a t e d t h a n t h a t o f s p a c e s o f fi n it e d im e n s io n
2 . 1 L i n e a r v e c t o r s a n d H i l b e r t sp a c e
D
: L i n e a r v e c t o r s p a c e A lin e a r v e c t o r s p a c e is a s e t o f e le m e n t s , c a lle d v e c t o r s , w h ic h is c lo s e d u n d e r a d d it io n a n d m u lt ip lic a t io n b y s c a la r s .
U s in g D ir a c n o t a t io n , t h e v e c t o r s a r e d e n o t e d b y k e t s : | k ) . W e c a n a s s o c ia t e t o e a c h k e t a v e c t o r in t h e d u a l s p a c e c a lle d b r a : ( ψ | .
Σ
If t w o v e c t o r s | ψ ) a n d | ϕ ) a r e p a r t o f a v e c t o r s p a c e , t h e n | ψ ) + | ϕ ) a ls o b e lo n g s t o t h e s p a c e . If a v e c t o r | ψ ) is in t h e s p a c e , t h e n α | ψ ) is a ls o in t h e s p a c e ( w h e r e α is a c o m p le x s c a la r ) .
{ | ) } | ) ∀
A s e t o f l i n e a r l y i n d e p e n d e n t v e c t o r s ϕ i is s u c h t h a t k c k ϕ k = 0 if a n d o n ly if c k = 0 k ( n o t r iv ia l c o m b in a t io n o f t h e m s u m s t o z e r o ) .
T h e d i m e n s i o n o f t h e s p a c e N is t h e m a x im u m n u m b e r o f lin e a r ly in d e p e n d e n t v e c t o r s ( w h ic h is a ls o t h e s m a lle s t n u m b e r o f v e c t o r s t h a t s p a n t h e s p a c e ) .
Σ
D { | ) }
: B a s i s A m a x im a l s e t o f lin e a r ly in d e p e n d e n t v e c t o r s in t h e s p a c e is c a lle d a b a s is . ( e .g . φ k , k = 1 , . . . , N ) . A n y v e c t o r in t h e s p a c e c a n b e w r it t e n a s a lin e a r s u p e r p o s it io n o f t h e b a s is v e c t o r s :
| ψ ) = a k | φ k ) ( 1 )
k
T o a n y v e c t o r w e c a n t h u s a s s o c ia t e a c o lu m n v e c t o r o f N c o m p le x n u m b e r s ( a 1 , a 2 ...a n ) T . H e r e w e a r e g o in g t o r e s t r ic t o u r s e lv e s t o b o u n d e d , fi n it e d im e n s io n s p a c e s ( e v e n if m a n y p h y s ic a l s p a c e s a r e n o t : f o r e x a m p le e n e r g y s p a c e s c a n b e u n b o u n d e d a n d p o s it io n h a s in fi n it e d im e n s io n ) .
D : H i l b e r t s p a c e T h e H ilb e r t s p a c e is a lin e a r v e c t o r s p a c e o v e r c o m p le x n u m b e r s w it h a n i n n e r p r o d u c t .
D : I n n e r p r o d u c t A n in n e r p r o d u c t is a n o r d e r e d m a p p in g f r o m t w o v e c t o r s t o a c o m p le x n u m b e r ( f o r a H ilb e r t s p a c e a m a p p in g f r o m a k e t a n d a b r a t o a c o m p le x n u m b e r c = ( ψ | ϕ ) ) w it h t h e f o llo w in g p r o p e r t ie s :
– p o s it iv it y : ( ψ | ψ ) ≥ 0 . T h e e q u a lit y h o ld s o n ly f o r t h e z e r o v e c t o r | ψ ) = 0 .
– lin e a r it y in t h e s e c o n d f u n c t io n : ( ψ | ( c 1 ϕ 1 ) + c 2 | ϕ 2 ) ) = c 1 ( ψ | ϕ 1 ) + c 2 ( ψ | ϕ 2 ) .
– a n t i- lin e a r it y in t h e fi r s t f u n c t io n :( ( c 1 ϕ 1 + ( c 2 | ϕ 2 ) | ψ ( = c 1 ∗ ( ϕ 1 | ψ ) + c 2 ∗ ( ϕ 2 | ψ ) .
D � ( | )
– s k e w s y m m e t r y : ( ψ | ϕ ) = ( ϕ | ψ ) ∗
: N o r m T h e n o r m o f a v e c t o r is ψ = ψ ψ .
S in c e t h e H ilb e r t s p a c e is c h a r a c t e r iz e d b y it s in n e r p r o d u c t , v e c t o r s a r e d e fi n e d u p t o a g lo b a l p h a s e , t h a t is ,
| ψ ) = e i ϑ | ψ ) . R e la t iv e p h a s e is in s t e a d v e r y im p o r t a n t : | ψ ) + e i ϑ | φ ) / = / | ψ ) + | φ ) .
T h e in n e r p r o d u c t p r o p e r t ie s a llo w u s t o d e fi n e t w o g e o m e t r ic in e q u a lit ie s :
– S c h w a r t z in e q u a lit y : |( ψ | ϕ ) | 2 ≤ ( ψ | ψ ) ( ϕ | ϕ ) .
– T r ia n g u la r in e q u a lit y : ( ψ + ϕ ) ≤ ϕ + ψ .
| ) | )
T h e e q u a lit y h o ld s o n ly if t h e t w o v e c t o r s a r e in t h e s a m e d ir e c t io n : ψ = c ϕ . T h e r e is a ls o a n a n t ilin e a r c o r r e s p o n d e n c e b e t w e e n t h e d u a l v e c t o r s k e t a n d b r a :
c 1 | ψ 1 ) + c 2 | ψ 2 ) → c 1 ∗ ( ψ 1 | + c 2 ∗ ( ψ 2 |
D : O r t h o n o r m a l s e t A s e t o f v e c t o r s { | ϕ k ) } is o r t h o n o r m a l if f o r e a c h p a ir t h e in n e r p r o d u c t ( ϕ k | ϕ j ) = δ k , j .
2 . 2 O p e r a t o r s
W e c a n d e fi n e a s e t o f o p e r a t o r s t h a t a c t in g o n t h e v e c t o r s r e t u r n v e c t o r s :
D | ) | )
: O p e r a t o r A n o p e r a t o r A o n a v e c t o r s p a c e is a m a p p in g b e t w e e n t w o v e c t o r s in t h a t s p a c e : A ψ = φ . A l i n e a r o p e r a t o r s a t is fi e s :
A ( c 1 | ψ 1 ) + c 2 | ψ 2 ) ) = c 1 A | ψ 1 ) + c 2 A | ψ 2 )
{ | ) }
T o c h a r a c t e r iz e a n d p a r a m e t r iz e A w e lo o k a t it s a c t io n o n e a c h v e c t o r in t h e s p a c e . B e c a u s e o f lin e a r it y , it is h o w e v e r e n o u g h t o c h a r a c t e r iz e A w it h it s a c t io n o n t h e N b a s is v e c t o r s φ k . In t h is w a y w e c a n a s s o c ia t e a m a t r ix r e p r e s e n t a t io n t o a n y o p e r a t o r , in t h e s a m e w a y w e a s s o c ia t e d a r r a y s o f c o m p le x n u m b e r s w it h t h e v e c t o r s . In p a r t ic u la r , g iv e n a n o r t h o n o r m a l b a s is { | v ) k } , t h e m a t r ix r e p r e s e n t a t io n o f t h e o p e r a t o r A is a n N × N s q u a r e
m a t r ix A w h o s e e le m e n t s a r e g iv e n b y A k , j = ( v k | A | v j ) .
i = 1
L e t u s c o n s id e r a n o r t h o n o r m a l b a s is { v i } , t h e n a s s e e n a n y v e c t o r c a n b e w r it t e n a s : | ψ ) = Σ N a i | v i ) . T h e a c t io n
o f a n o p e r a t o r A b e c o m e s :
Σ Σ
N N
A | ψ ) = | ϕ ) → A a i | v i ) = b i | v i )
i = 1 i = 1
T o e x t r a c t o n e o f t h e c o e ffi c ie n t s , s a y b k w e m u lt ip ly b y t h e b r a ( v k | , o b t a in in g :
N
Σ ( v k | A a i | v i ) = b k → Σ A k i a i = b k
i = 1
i
T h e a c t io n o f a n o p e r a t o r c a n b e t h u s s e e n a s a m a t r ix m u lt ip lic a t io n ( a g a in , h e r e w e a r e r e s t r ic t in g t o b o u n d e d , fi n it e d im e n s io n s p a c e s t h a t s u p p o r t fi n it e o p e r a t o r s , h e n c e t h is s im p le m a t r ix r e p r e s e n t a t io n ) .
? Q u e s t i o n : P e r f o r m a s i m p l e m a t r i x m u l t i p l i c a t i o n .
0 1 0
0 0
0 1 0 1
1 0 1
· 0 = 1
0
T h i s i s e q u i v a l e n t t o R x · v v z = v v y .
T h e d o m a i n o f a n o p e r a t o r is t h e s u b s p a c e o n w h ic h it a c t s n o n - t r iv ia lly ( s p a n n e d b y k ≤ N v e c t o r s ) .
∀ | )
T w o o p e r a t o r s A a n d B a r e e q u a l if t h e ir d o m a in s a r e t h e s a m e a n d t h e ir a c t io n is e q u a l ψ in t h e ir d o m a in s . T h e s u m a n d p r o d u c t o f o p e r a t o r s a r e t h e n d e fi n e d a s
( A + B ) | ψ ) = A | ψ ) + B | ψ ) )
( A B ) | ψ ) = A ( B | ψ ) )
T h e o p e r a t o r s a r e a s s o c ia t iv e :
A ( B C ) | ψ ) = ( A B ) C | ψ )
B u t t h e y a r e n o t in g e n e r a l c o m m u t a t iv e :
A B | ψ ) / / = B A | ψ )
D : C o m m u t a t o r . T h e c o m m u t a t o r o f t w o o p e r a t o r s is [ A , B ] = A B − B A . T w o o p e r a t o r s c o m m u t e / a r e c o m m u t a b le if [ A , B ] = 0 .
2 . 2 . 1 H e r m i t i a n o p e r a t o r s
(
A n im p o r t a n t c la s s o f o p e r a t o r s a r e s e lf a d j o in t o p e r a t o r s , a s o b s e r v a b le s a r e d e s c r ib e d b y t h e m .
( ψ | ( A ϕ ) ) , ∀ { | ψ ) , | ϕ ) ( } . W e c a n a ls o h a v e o t h e r n o t a t io n s . F r o m ( ϕ | ψ ) = ( ψ | ϕ ) ∗ ( w h e r e ∗ in d ic a t e s t h e c o m p le x
D : A d j o i n t T h e a d j o in t o f a n o p e r a t o r A † is a n o p e r a t o r a c t in g o n t h e d u a l s p a c e w it h t h e p r o p e r t y : ( A † ψ ) ϕ ) =
c o n j u g a t e ) w e h a v e ( A † ψ ) ϕ ) = ( ψ | ( A ϕ ) ) = ( ϕ | A † ψ ) ∗ . A ls o , w e c a n w r it e t h e in n e r p r o d u c t a s ( ϕ | ( A ψ ) ) = ( ϕ | A | ψ )
a n d ( ( A ϕ ) | ψ ) = ( ϕ | A † | ψ ) . In m a t r ix r e p r e s e n t a t io n , t h is m e a n s t h a t t h e a d j o in t o f a n o p e r a t o r is t h e c o n j u g a t e t r a n s p o s e o f t h a t o p e r a t o r : A † k , j = ( k | A † | j ) = ( j | A | k ) ∗ = A j ∗ , k .
D
: S e l f - a d j o i n t . A s e lf a d j o in t o p e r a t o r is a n o p e r a t o r s u c h t h a t A a n d A † o p e r a t e o n t h e s a m e d o m a in a n d w it h t h e p r o p e r t y
( ψ | A | ϕ ) = ( ϕ | A | ψ ) ∗
o r s h o r t ly , A † = A . In m a t r ix r e p r e s e n t a t io n w e h a v e t h e n : A k i = A i ∗ k .
? Q u e s t i o n : P r o v e t h a t ( c A ) † = c ∗ A †
W e w a n t t o p r o v e t h a t ( c A ) † = c ∗ A † . W e c a n t a k e t w o s t r a t e g i e s :
1 ) F r o m t h e a d j o i n t o p e r a t o r d e fi n i t i o n i n t h e f o r m :
w i t h B = c A w e o b t a i n :
⟨ B φ | ψ ⟩ = ⟨ φ | B ψ ⟩ ,
†
† † ∗ †
⟨ ( c A ) φ | ψ ⟩ = ⟨ φ | c A ψ ⟩ = c ⟨ φ | A ψ ⟩ = c ⟨ A φ | ψ ⟩ = ⟨ c A φ | ψ ⟩
2 ) A l t e r n a t i v e l y , w e c a n u s e t h e a d j o i n t d e fi n i t i o n i n D i r a c ’ s n o t a t i o n :
† ∗
⟨ ϕ | B | ψ ⟩ = ⟨ ψ | B | ϕ ⟩ ,
t o g e t :
† ∗ ∗ ∗ ∗ † ∗ †
⟨ ϕ | ( c A ) | ψ ⟩ = ⟨ ψ | c A | ϕ ⟩ = c ⟨ ψ | A | ϕ ⟩ = c ⟨ ϕ | A | ψ ⟩ = ⟨ ϕ | c A | ψ ⟩
N o t e t h a t w e c a n w r it e
| ) ( | | ) (
( B † φ | ψ ) = ( φ | B ψ ) = ( ϕ | B | ψ ) = ( ψ | B † | ϕ ) ∗ .
T h e s e c o n d n o t a t io n ( b a s e d o n D ir a c ’s n o t a t io n ) c o u ld b e s e e n a s im p ly in g ( ϕ ) † = ϕ ( a n d t h u s ( A ϕ ) † = A † φ . H o w e v e r , t h is a p p lie s t h e a d j o in t o p e r a t io n t o a v e c t o r , w h ile t h e a d j o in t is o n ly p r o p e r ly d e fi n e d f o r o p e r a t o r s . F o r d is c r e t e d im e n s io n a l s p a c e s , w h ic h a llo w a m a t r ix r e p r e s e n t a t io n , t h e r e is n o a m b ig u it y s in c e w e h a v e t h e e q u iv a le n c e o f t h e a d j o in t w it h t h e c o m p le x - t r a n s p o s e o f a n o p e r a t o r ( w h ic h c a n b e d e fi n e d a ls o f o r v e c t o r s ) 4 .
4 S e e a l s o q u a n t - p h / 9 9 0 7 0 6 9 p a g e 1 2 , f o r a s u b t l e d i ff e r e n c e b e t w e e n H e r mi t i a n a n d s e l f - a d j o i n t i n fi n i t e - d i me n s i o n a l o p e r a t o r s
? Q u e s t i o n : P r o v e t h a t ( A B ) † = B † A †
† † †
†
†
∀ | ψ ⟩ w e h a v e | ϕ ⟩ = ( A B ) | ψ ⟩ → ⟨ φ | = ⟨ ψ | ( A B ) . D e fi n e | φ ⟩ = B | ψ ⟩ , t h e n | ϕ ⟩ = A | φ ⟩ , ⟨ ϕ | = ⟨ ψ | B a n d ⟨ φ | = ⟨ ϕ | A , s o t h a t
⟨ φ | = ⟨ ψ | B A .
A s e lf - a d j o in t o p e r a t o r is a ls o H e r m it ia n in b o u n d e d , fi n it e s p a c e , t h e r e f o r e w e w ill u s e e it h e r t e r m . H e r m it ia n o p e r a t o r s h a v e s o m e p r o p e r t ie s :
1 . if A , B a r e b o t h H e r m it ia n , t h e n A + B is H e r m it ia n ( b u t n o t ic e t h a t A B is a p r io r i n o t , u n le s s t h e t w o o p e r a t o r s c o m m u t e , t o o .) .
2 . if A , B a r e b o t h H e r m it ia n b u t d o n o t c o m m u t e , t h e n a t le a s t A B + B A is H e r m it ia n .
? Q u e s t i o n : P r o v e p r o p e r t y # 2 .
( A B + B A ) † = B † A † + A † B † = B A + A B .
B e f o r e d e s c r ib in g o t h e r p r o p e r t ie s w e n e e d t h e f o llo w in g d e fi n it io n .
D : E i g e n v e c t o r W e d e fi n e a r ig h t e ig e n v e c t o r a s a c o lu m n v e c t o r | ψ ) R s a t is f y in g A | ψ ) R = λ R | ψ ) R , s o ( A − λ R 1 1 ) | ψ ) R =
0 , w h ic h m e a n s t h e r ig h t e ig e n v a lu e s λ R m u s t h a v e z e r o d e t e r m in a n t , i.e ., d e t ( A − λ R 1 1 ) e ig e n v e c t o r is s u c h t h a t ( ψ | L A = λ L ( ψ | L .
= 0 . S im ila r ly , a le f t
T h e f o llo w in g p r o p e r t ie s w ill b e v e r y im p o r t a n t in Q M :
3 . if A is H e r m it ia n it s e ig e n v a lu e s a r e r e a l ( e ig e n v a lu e s : s c a la r a s u c h t h a t A | ψ ⟩ = a | ψ ⟩ ) . It is e a s y t o s h o w t h is p r o p e r t ie s f r o m ⟨ ψ | A | ψ ⟩ = a = a ∗ .
u n le s s a = a .
4 . d is t in c t e ig e n v e c t o r s o f a n H e r m it ia n o p e r a t o r a r e o r t h o g o n a l: A | ψ 1 ⟩ = a 1 | ψ 1 ⟩ , A | ψ 2 ⟩ = a 2 | ψ 2 ⟩ → ⟨ ψ 1 | ψ 2 ⟩ = 0
1 2
5 . d is t in c t e ig e n v a lu e s c o r r e s p o n d t o o r t h o g o n a l e ig e n v e c t o r s :
G iv e n A | ψ 1 ⟩ = c 1 | ψ 1 ⟩ a n d A | ψ 2 ⟩ = c 2 | ψ 2 ⟩ , if c 1 = / c 2 → ⟨ ψ 1 | ψ 2 ⟩ = 0 .
A s o b s e r v a b le s a r e g iv e n b y H e r m it ia n o p e r a t o r s , t h e fi r s t p r o p e r t ie s w ill im p ly t h a t t h e v a lu e s t h a t a n o b s e r v a b le c a n t a k e o n a r e o n ly r e a l v a lu e s ( a s n e e d e d f o r t h e o b s e r v a b le t o h a v e a p h y s ic a l m e a n in g ) . O n t h e d o m a in o f t h e o p e r a t o r , t h e e ig e n v e c t o r s f o r m a c o m p le t e o r t h o g o n a l b a s is s e t .
? Q u e s t i o n : P r o v e p r o p e r t y # 5 .
∗
⟨ ψ 2 | A ψ 1 ⟩ = ⟨ ψ 2 | c 1 ψ 1 ⟩ = ⟨ c 2 ψ 2 | ψ 1 ⟩ . F o r H e r m i t i a n o p e r a t o rs t h e n c 1 ⟨ ψ 2 | ψ 1 ⟩ = c 2 ⟨ ψ 2 | ψ 1 ⟩ , w h i c h i s s a t i s fi e d o n l y i f c 1 = c 2
o r i f ⟨ ψ 1 | ψ 2 ⟩ = 0 .
? Q u e s t i o n : P r o v e p r o p e r t y # 4 .
∗ ∗ ∗
C o n s i d e r t w o e i g e n s t a t e s o f A | a 1 ⟩ a n d | a 2 ⟩ . W e h a v e ⟨ a 2 | A | a 1 ⟩ = ⟨ a 1 | A | a 2 ⟩ ∗ s i n c e A i s H e r m i t i a n . N o w ⟨ a 2 | A | a 1 ⟩ = a 1 ⟨ a 2 | a 1 ⟩ a n d ⟨ a 1 | A | a 2 ⟩ = ( a 2 ⟨ a 1 | a 2 ⟩ ) = a 2 ( ⟨ a 1 | a 2 ⟩ ) s i n c e a 2 i s r e a l ( b e i n g a n e i g e n v e c t o r o f A . W e t h u s h a v e a 1 ⟨ a 2 | a 1 ⟩ = a 2 ⟨ a 2 | a 1 ⟩ w h i c h i s s a t i s fi e d i i f a 1 = a 2 ( c o n t r a r y t o t h e h y p o t h e s i s ) o r i f ⟨ a 2 | a 1 ⟩ = 0 .
2 . 2 . 2 O p e r a t o r s a n d t h e i r p r o p e r t i e s
D : T h e O u t e r P r o d u c t | ψ ⟩ ⟨ ϕ | is a n o p e r a t o r , s in c e a c t in g o n a v e c t o r r e t u r n s a v e c t o r : ( | ψ ⟩ ⟨ ϕ | ) | φ ⟩ = ⟨ ϕ | φ ⟩ | ψ ⟩ .
Σ
Σ
| ⟩ ⟨ |
It d e fi n e s a p r o j e c t o r o p e r a t o r P i = | v i ⟩ ⟨ v i | . T h e s u m o v e r a ll p r o j e c t o r s o n t h e s p a c e is t h e id e n t it y , t h e r e f o r e , f o r a n y b a s is s e t w e h a v e : i v i v i = 1 1 ( c lo s u r e r e la t io n ) . T h e p r o d u c t o f t w o p r o j e c t o r s is P j P k = δ i k P j . P r o j e c t o r s d e r iv e t h e ir n a m e f r o m t h e p r o p e r t y t h a t t h e y p r o j e c t o u t a v e c t o r c o m p o n e n t o f t h e r e la t e d b a s is v e c t o r : g iv e n P j = | v j ⟩ ⟨ v j | , P j | ψ ⟩ = P j k c k | v k ⟩ = c j | v j ⟩ .
j = 1
Σ
D : T r a c e - T h e t r a c e o f a n o p e r a t o r is t h e s u m o f t h e d ia g o n a l e le m e n t s o f a n o p e r a t o r T r { A } = Σ N A j j =
j ⟨ v j | A | v j ⟩ . It is in d e p e n d e n t o f t h e c h o ic e o f b a s is .
Σ
H
D H
: S p e c t r a l D e c o m p o s i t i o n - T h e s p e c t r a l t h e o r e m s t a t e s t h a t g iv e n a s e lf - a d j o in t o p e r a t o r A o n a lin e a r s p a c e , t h e r e e x is t s a n o r t h o n o r m a l b a s is o f c o n s is t in g o f e ig e n v e c t o r s o f A . E q u iv a le n t ly , w e c a n s t a t e t h a t A c a n b e w r it t e n a s a lin e a r c o m b in a t io n o f p a ir w is e o r t h o g o n a l p r o j e c t io n s ( w h ic h a r e f o r m e d f r o m it s e ig e n v e c t o r s ) . T h is r e p r e s e n t a t io n o f A is c a lle d it s s p e c t r a l d e c o m p o s it io n : A = j a j | v j ⟩ ⟨ v j | , w h e r e A | v j ⟩ = a j | v j ⟩ . In t h is b a s is , t h e m a t r ix r e p r e s e n t a t io n o f A is d ia g o n a l.
□ T h e o r e m: If t w o h e r m it ia n o p e r a t o r s c o m m u t e , t h e y s h a r e a c o m m o n s e t o f e ig e n v e c t o r s .
/
⟨ | | ⟩ ⟨ | | ⟩
⟨ | − | ⟩ ⟨ | | ⟩ − ⟨ | | ⟩
If [ A , B ] = 0 t h e n A B = B A . G iv e n t w o e ig e n v e c t o r s o f A , w e h a v e a ′ ( A B B A ) a ′ ′ = a ′ a ′ B a ′ ′ a ′ ′ a ′ B a ′ ′ . T h is is z e r o if a ′ ′ = a ′ ( a n d a ′ B a ′ is a d ia g o n a l t e r m o f B a n d it c a n b e a n y t h in g ) o r if a ′ B a ′ ′ = 0 ( o ff - d ia g o n a l, w it h a ′ = a ′ ′ ) . T h u s B is d ia g o n a l in t h e b a s is o f A ’s e ig e n v e c t o r s , h e n c e A ’s e ig e n v e c t o r s a r e a ls o e ig e n v e c t o r s o f B .
A s im u lt a n e o u s e ig e n v e c t o r o f A a n d B | a , b ⟩ h a s t h e p r o p e r t y : A | a , b ⟩ = a | a , b ⟩ a n d B | a , b ⟩ = b | a , b ⟩ . T h e n o t a t io n
= a a ( i )
| a , b ⟩ is u s e f u l w h e n t h e e ig e n v e c t o r is d e g e ne r a t e , t h a t is , t h e r e e x is t m o r e t h a n o n e e ig e n v e c t o r w it h t h e s a m e
e ig e n v a lu e : A a ( i )
e ig e n v e c t o r s .
, i = 1 , . . . n , w h e r e n is t h e d e g e n e r a c y . T h e n t h e la b e l b s e r v e s t o d is t in g u is h d iff e r e n t
D : Un i t a r y o p e r a t o r A n o p e r a t o r f u lfi llin g t h e c o n d it io n s U † U = 1 1 a n d U U † = 1 1 is c a lle d u n it a r y .
( T h e u n it a r y o p e r a t o r is U =
k | ϕ k ⟩ ⟨ ψ k | ) .
□ T h e o r e m: G iv e n t w o s e t s o f b Σ a s is k e t s { | ψ ⟩ i } a n d { | φ ⟩ i } t h e r e e x is t a u n it a r y o p e r a t o r s u c h t h a t | φ ⟩ i = U | ψ ⟩ i , ∀ i .
2 . 2 . 3 F u n c t i o n s o f o p e r a t o r s
n ! n !
F u n c t io n s o f o p e r a t o r s a r e d e fi n e d b y t h e c o r r e s p o n d in g T a y lo r e x p a n s io n o f t h e f u n c t io n ( if t h a t e x is t s ) . If f ( x ) = f ( 0 ) + f ′ ( 0 ) x + · · · + 1 f ( n ) ( 0 ) x n + . . . , t h e n f ( A ) = f ( 0 ) 1 1 + f ′ ( 0 ) A + · · · + 1 f ( n ) ( 0 ) A n + . . . , w h e r e t h e m a t r ix p o w e r is d e fi n e d r e c u r s iv e ly in t e r m s o f p r o d u c t s A n = A ( A n − 1 ) .
? Q u e s t i o n : S h o w t h a t g i v e n t h Σ e s p e c t r a l d e c Σ o mp o s i t i o n o f t h Σ e o p e r a t o r A = Σ a λ a | a ⟩ ⟨ a Σ | w e h a v e f ( A ) = Σ a f ( λ a ) | a ⟩ ⟨ a | .
a a a , b
a
W e c a n fi r s t p r o v e t h a t A 2 = ( λ a | a ⟩ ⟨ a | ) ( λ a | a ⟩ ⟨ a | ) = λ a λ b ( | a ⟩ ⟨ a | ) ( | b ⟩ ⟨ b | ) =
a
λ 2 | a ⟩ ⟨ a | . T h e n s h o w t h a t i f t h e
t h e o r e m i s v a l i d f o r n − 1 i t i s a l s o v a l i d f o r n . F i n a l l y , u s e t h e T a y l o r e x p a n s i o n t o s h o w i t ’ s t r u e .
n n !
k
? Q u e s t i o n : C o n s i d e r i n p a rt i c u l a r t h e e x p o n e n t i a l f u n c t i o n : e x p ( ξ A ) = Σ 1 ( ξ A ) n = Σ e x p ( ξ a k ) | a k ⟩ ⟨ a k | . P r o v e t h a t
f ( A B A − 1 ) = A f ( B ) A − 1
I t ’ s e a s y t o s h o w t h a t ( A B A − 1 ) n = A B n A − 1 b y e x p a n d i n g t h e p r o d u c t a n d u s i n g A A − 1 = 1 1 . I n p a r t i c u l a r f o r u n i t a r y ma t r i c e s U − 1 = U † → f ( U A U † ) = U f ( A ) U † .
MIT OpenCourseWare http://ocw.mit.edu
22.51 Quantum Theory of Radiation Interactions
Fall 201 2
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .