1 1 . P e r tu r b a ti o n T h e o r y

1 1 . 1 T i m e - i n d e p e n d e n t p e r t u r b at i o n t h e o r y

1 1 . 1 . 1 N o n - d e g e n e r a t e c a s e

1 1 . 1 . 2 D e g e n e r a t e c a s e

1 1 . 1 . 3 T h e S t a r k e ff e c t

1 1 . 2 T i m e - d e p e n d e n t p e r t u r b at i o n t h e o r y

1 1 . 2 . 1 R e v i e w o f i n t e r a c t i o n p i c t u r e

1 1 . 2 . 2 D y s o n s e r i e s

1 1 . 2 . 3 F e r m i s G o l d e n R u l e

1 1 . 1 Ti m e - i n d e p e n d e n t p e r t u r b a t i o n t h e o r y

B e c a u s e o f t h e c o m p le x it y o f m a n y p h y s ic a l p r o b le m s , v e r y f e w c a n b e s o lv e d e x a c t ly ( u n le s s t h e y in v o lv e o n ly s m a ll H ilb e r t s p a c e s ) . In p a r t ic u la r , t o a n a ly z e t h e in t e r a c t io n o f r a d ia t io n w it h m a t t e r w e w ill n e e d t o d e v e lo p a p p r o x im a t io n m e t h o d s 3 6 .

1 1 . 1 . 1 N o n - d e g e n e r a t e c a s e

W e h a v e a n H a m ilt o n ia n

H = H 0 + ǫ V

H

w h e r e w e k n o w t h e e ig e n v a lu e o f t h e u n p e r t u r b e d H a m ilt o n ia n 0 a n d w e w a n t t o s o lv e f o r t h e p e r t u r b e d c a s e

H H

= 0 + ǫ V , in t e r m s o f a n e x p a n s io n in ǫ ( w it h ǫ v a r y in g b e t w e e n 0 a n d 1 ) . T h e s o lu t io n f o r ǫ 1 is t h e d e s ir e d s o lu t io n .

W e a s s u m e t h a t w e k n o w e x a c t ly t h e e n e r g y e ig e n k e t s a n d e ig e n v a lu e s o f H 0 :

( 0 )

L

H 0 | k ) = E k | k )

k

A s H 0 is h e r m it ia n , it s e ig e n k e t s f o r m a c o m p le t e b a s is k | k ) ( k | = 1 1 . W e a s s u m e a t fi r s t t h a t t h e e n e r g y s p e c t r u m is n o t d e g e n e r a t e ( t h a t is , a ll t h e E ( 0 ) a r e d iff e r e n t , in t h e n e x t s e c t io n w e w ill s t u d y t h e d e g e n e r a t e c a s e ) . T h e e ig e n s y s t e m f o r t h e t o t a l h a m ilt o n ia n is t h e n

( H 0 + ǫ V ) | ϕ k ) ǫ = E k ( ǫ ) | ϕ k ) ǫ

w h e r e ǫ = 1 is t h e c a s e w e a r e in t e r e s t e d in , b u t w e w ill s o lv e f o r a g e n e r a l ǫ a s a p e r t u r b a t io n in t h is p a r a m e t e r :

k

k

k

k

k

k

| ϕ k ) = ϕ ( 0 ) ) + ǫ ϕ ( 1 ) ) + ǫ 2 ϕ ( 2 ) ) + . . . , E k = E ( 0 ) + ǫ E ( 1 ) + ǫ 2 E ( 2 ) + . . .

3 6 A v e r y g o o d t r e a t me n t o f p e r t u r b a t i o n t h e o r y i s i n S a k u r a i s b o o k J . J . S a k u r a i M o d e r n Q u a n t u m M e c h a n i c s , A d d i s o n ­ W e s l e y ( 1 9 9 4 ) , w h i c h w e f o l l o w h e r e .

k

k k

)

w h e r e o f c o u r s e ϕ ( 0 ) = | k ) . W h e n ǫ is s m a ll, w e c a n in f a c t a p p r o x im a t e t h e t o t a l e n e r g y E k b y E ( 0 ) . T h e e n e r g y s h if t d u e t o t h e p e r t u r b a t io n is t h e n o n ly k = E k E ( 0 ) a n d w e c a n w r it e :

k ǫ k

( H 0 + ǫ V ) | ϕ k ) = ( E ( 0 ) + k ) | ϕ k ) ( E ( 0 ) H 0 ) | ϕ k ) = ( ǫ V k ) | ϕ k )

T h e n , w e p r o j e c t o n t o ( k | :

( 0 )

( k | ( E k

H 0 ) | ϕ k ) = ( k | ( ǫ V k ) | ϕ k )

k

T h e L H S is z e r o s in c e ( k | H 0 | ϕ k ) = ( k | E ( 0 ) | ϕ k ) , a n d f r o m t h e R H S ( k | ( ǫ V k ) | ϕ k ) = 0 w e o b t a in :

k

= ǫ ( k | V | ϕ k )

( k | ϕ k )

k

= ǫ ( k | V | ϕ k )

k k

w h e r e w e s e t ( k | ϕ k ) = 1 ( a n o n - c a n o n ic a l n o r m a liz a t io n , a lt h o u g h , a s w e w ill s e e , it is a p p r o x im a t e ly v a lid ) . U s in g t h e e x p a n s io n a b o v e , w e c a n r e p la c e k b y ǫ E 1 + ǫ 2 E 2 + . . . a n d | ϕ k ) b y it s e x p a n s io n :

k

k

k k

ǫ E 1 + ǫ 2 E 2 + · · · = ǫ ( k | V ( | k ) + ǫ ϕ ( 1 ) ) + ǫ 2 ϕ ( 2 ) ) + . . . )

a n d e q u a t in g t e r m s o f t h e s a m e o r d e r in ǫ w e o b t a in :

E = (

k

n

k | V ϕ

( n

k

1 )

)

k

)

T h is is a r e c ip e t o fi n d t h e e n e r g y a t a ll o r d e r s b a s e d o n ly o n t h e k n o w le d g e o f t h e e ig e n s t a t e s o f lo w e r o r d e r s . H o w e v e r , t h e q u e s t io n s t ill r e m a in s : h o w d o w e fi n d ϕ ( n 1 ) ?

W e c o u ld t h in k o f s o lv in g t h e e q u a t io n :

k

( E ( 0 ) H 0 ) | ϕ k ) = ( ǫ V k ) | ϕ k ) ( )

k

f o r | ϕ k ) , b y in v e r t in g t h e o p e r a t o r ( E ( 0 ) H 0 ) a n d a g a in d o in g a n e x p a n s io n o f | ϕ k ) t o e q u a t e t e r m s o f t h e s a m e

o r d e r :

| k ) + ǫ ϕ ( 1 ) ) + · · · = ( E ( 0 ) H 0 ) 1 ( ǫ V k ) ( | k ) + ǫ ϕ ( 1 ) ) + . . . )

k k k

k

k k

U n f o r t u n a t e ly t h is p r o m is in g a p p r o a c h is n o t c o r r e c t , s in c e t h e o p e r a t o r ( E ( 0 ) H 0 ) 1 is n o t a lw a y s w e ll d e fi n e d . S p e c ifi c a lly , t h e r e is a s in g u la r it y f o r ( E ( 0 ) H 0 ) 1 | k ) . W h a t w e n e e d is t o m a k e s u r e t h a t ( E ( 0 ) H 0 ) 1 is n e v e r

W e t h u s d e fi n e t h e p r o j e c t o r P k = 1 1 | k ) ( k | =

k | h ) ( h | . T h e n w e c a n e n s u r e t h a t | ψ ) t h e p r o j e c t e d s t a t e

a p p lie d t o e ig e n s t a t e s o f t h e u n p e r t u r b e d H a m ilt o L n ia n , t h a t is , w e n e e d | ψ k ) = ( ǫ V k ) | ϕ k ) / = / | k ) f o r a n y | ϕ k ) .

h / = /

| ψ ) = P k | ψ ) is s u c h t h a t ( k | ψ ) = 0 s in c e t h is is e q u a l t o

( k | P k | ψ ) = ( k | ψ ) ( k | k ) ( k | ψ ) = 0

k

N o w , u s in g t h e p r o j e c t o r , ( E ( 0 ) H 0 ) 1 P k | ψ ) is w e ll d e fi n e d . W e t h e n t a k e t h e e q u a t io n ( ) a n d m u lt ip ly it b y P k

k

f r o m t h e le f t :

P k ( E ( 0 ) H 0 ) | ϕ k ) = P k ( ǫ V k ) | ϕ k ) .

k k

S in c e P k c o m m u t e s w it h H 0 ( a s | k ) is a n e ig e n s t a t e o f H 0 ) w e h a v e P k ( E ( 0 ) H 0 ) | ϕ k ) = ( E ( 0 ) H 0 ) P k | ϕ k ) a n d w e

c a n r e w r it e t h e e q u a t io n a s

k

P k | ϕ k ) = ( E ( 0 ) H 0 ) 1 P k ( ǫ V k ) | ϕ k )

W e c a n f u r t h e r s im p lif y t h is e x p r e s s io n , n o t in g t h a t P k | ϕ k ) = | ϕ k ) | k ) ( k | ϕ k ) = | ϕ k ) | k ) ( s in c e w e a d o p t e d t h e n o r m a liz a t io n ( k | ϕ k ) = 1 ) . F in a lly w e o b t a in :

k

| ϕ k ) = | k ) + ( E ( 0 ) H 0 ) 1 P k ( ǫ V k ) | ϕ k ) ( )

k

0

E 0

h / = k

E k

h

N o w u s in g t h e e x p a n s io n

( 1 ) 1 2

( 1 )

T h is e q u a t io n is n o w r e a d y t o b e s o lv e d b y u s in g t h e p e r t u r b a t io n e x p a n s io n . T o s im p lif y t h e e x p r e s s io n , w e d e fi n e t h e o p e r a t o r R k

k

k

0

R = ( E ( 0 ) H ) 1 P

= L | h ) ( h |

| k ) + ǫ | ϕ k

) + · · · = | k ) + R k ǫ ( V E k ǫ E k . . . ) ( | k ) + ǫ | ϕ k

) + . . . )

w e c a n s o lv e t e r m b y t e r m t o o b t a in :

k

k

1 s t o r d e r : | ϕ ( 1 ) ) = R k ( V E 1 ) | k ) = R k ( V ( k | V | k ) ) | k ) = R k V | k )

| )

k h

( w h e r e w e u s e d t h e e x p r e s s io n f o r t h e fi r s t o r d e r e n e r g y a n d t h e f a c t t h a t R k k = 0 b y d e fi n it io n ) . W e c a n n o w c a lc u la t e t h e s e c o n d o r d e r e n e r g y , s in c e w e k n o w t h e fi r s t o r d e r e ig e n s t a t e :

E 2 = ( k | V | ϕ ( 1 ) ) = ( k | V R V | k ) = ( k | V L

| h ) ( h |

V | k )

o r e x p lic it ly

k k k

h / = k

E 0 E 0

E k =

2

L

| V |

k h

2

0 0

h / = k

E E

k h

T h e n t h e s e c o n d o r d e r e ig e n s t a t e is

k

2 n d o r d e r : ϕ 2 = R k V R k V | k )

A . F o r m a l S o l u ti o n

W e c a n a ls o fi n d a m o r e f o r m a l e x p r e s s io n t h a t c a n y ie ld t h e s o lu t io n t o a ll o r d e r s . W e r e w r it e E q . ( * * ) u s in g R k

a n d o b t a in

| ϕ k ) = | k ) + R k ( ǫ V k ) | ϕ k ) = R k H 1 | ϕ k )

w h e r e w e d e fi n e d H 1 = ( ǫ V k ) . T h e n b y it e r a t io n w e c a n w r it e :

| ϕ k ) = | k ) + R k H 1 ( | k ) + R k H 1 | ϕ k ) ) = | k ) + R k H 1 | k ) + R k H 1 R k H 1 | ϕ k )

a n d in g e n e r a l:

n

| ϕ k ) = | k ) + R k H 1 | k ) + R k H 1 R k H 1 | k ) + · · · + ( R k H 1 )

| k ) + . . .

T h is is j u s t a g e o m e t r ic s e r ie s , w it h f o r m a l s o lu t io n :

| ϕ k ) = ( 1 1 R k H 1 ) 1 | k )

B . N o r m a l i za ti o n

In d e r iv in g t h e T IP T w e in t r o d u c e d a n o n - c a n o n ic a l n o r m a liz a t io n ( k | ϕ k ) = 1 , w h ic h im p lie s t h a t t h e p e r t u r b e d s t a t e | ϕ k ) is n o t n o r m a liz e d . W e c a n t h e n d e fi n e a p r o p e r ly n o r m a liz e d s t a t e a s

| ϕ k )

k

k

| ψ k ) = v ( ϕ | ϕ )

s o t h a t ( k | ψ k ) = 1 / v ( ϕ k | ϕ k ) . W e c a n c a lc u la t e p e r t u r b a t iv e ly t h e n o r m a liz a t io n f a c t o r ( ϕ k | ϕ k ) :

( ϕ k | ϕ k ) = ( k + ǫ ϕ k + . . . | k + ǫ ϕ

+ . . . ) = 1 + ǫ ( k | ϕ k ) + .. + ǫ ( ϕ k | ϕ k ) + .. = 1 + ǫ

1 1 1

h k

2 1 1

2 L | V k h | 2

h = /

k

( E 0 E 0 ) 2

N o t ic e t h a t t h e s t a t e is c o r r e c t ly n o r m a liz e d u p t o t h e s e c o n d o r d e r in ǫ .

C . A n ti - c r o s s i n g

k h

C o n s id e r t w o le v e ls , h a n d k w it h e n e r g ie s E 0 a n d E 0 a n d a s s u m e t h a t w e a p p ly a p e r t u r b a t io n V w h ic h c o n n e c t s o n ly t h e s e t w o s t a t e s ( t h a t is , V is s u c h t h a t ( l | V | j ) = 0 a n d it is d iff e r e n t t h a n z e r o o n ly f o r t h e t r a n s it io n f r o m h

t o k : ( h | V | k ) = / 0 .)

If t h e p e r t u r b a t io n is s m a ll, w e c a n a s k w h a t a r e t h e p e r t u r b e d s t a t e e n e r g ie s .

( 2 ) L | V k j | 2 | V k h | 2

T h e fi r s t o r d e r is z e r o b y t h e c h o ic e o f V , t h e n w e c a n c a lc u la t e t h e s e c o n d o r d e r :

a n d s im ila r ly

E k =

E 0 E 0 = E 0 E 0

j / = k k j k h

E h

=

E 0 E 0 = E 0 E 0 = E k

j / = h h j h k

.

( 2 ) L | V h j | 2 | V k h | 2 ( 2 )

k

h

k h

T h is o p p o s it e e n e r g y s h if t w ill b e m o r e im p o r t a n t ( m o r e n o t ic e a b le ) w h e n t h e e n e r g ie s o f t h e t w o le v e ls E 0 a n d E 0 a r e c lo s e t o e a c h o t h e r . In d e e d , in t h e a b s e n c e o f t h e p e r t u r b a t io n , t h e t w o e n e r g y le v e ls w o u ld c r o s s w h e n E 0 = E 0 . If w e a d d t h e p e r t u r b a t io n , h o w e v e r , t h e t w o le v e ls a r e r e p e lle d w it h o p p o s it e e n e r g y s h if t s . W e d e s c r ib e w h a t is h a p p e n in g a s a n a n t i- c r o s s in g o f t h e le v e ls : e v e n a s t h e le v e ls b e c o m e c o n n e c t e d b y a n in t e r a c t io n , t h e le v e ls n e v e r m e e t ( n e v e r h a v e t h e s a m e e n e r g y ) s in c e e a c h le v e l g e t s s h if t e d b y t h e s a m e a m o u n t in o p p o s it e d ir e c t io n s .

D . E x a m p l e : T L S e n e r g y s p l i tti n g f r o m p e r tu r b a ti o n

k

C o n s id e r t h e H a m ilt o n ia n H = ω σ z + ǫ σ x . F o r ǫ = 0 t h e e ig e n s t a t e s a r e | k ) = { | 0 ) , | 1 ) } a n d e ig e n v a lu e s E 0 = ± ω .

W e a ls o k n o w h o w t o s o lv e e x a c t ly t h is s im p le p r o b le m b y d ia g o n a liz in g t h e e n t ir e m a t r ix :

E 1 , 2 = ± v ω 2 + ǫ 2 2 ,

| ϕ 1 ) = c o s ( ϑ / 2 ) | 0 ) + s in ( ϑ / 2 ) | 1 ) , | ϕ 2 ) = c o s ( ϑ / 2 ) | 1 ) s in ( ϑ / 2 ) | 0 ) w it h ϑ = a r c t a n ( ǫ / ω ) F o r ǫ 1 w e c a n e x p a n d in s e r ie s t h e s e r e s u lt s t o fi n d :

E 1 , 2 ± ( ω +

ǫ 2 2

2 ω

+ . . . )

ϑ ǫ ϑ ǫ

| ϕ 1 ) | 0 ) + 2 | 1 ) = | 0 ) + 2 ω | 1 ) | ϕ 2 ) | 1 ) 2 | 0 ) = | 1 ) 2 ω | 0 )

A s a n e x e r c is e , w e c a n fi n d a s w e ll t h e r e s u lt s o f T IP T . F ir s t w e fi n d t h a t t h e fi r s t o r d e r e n e r g y s h if t is z e r o , s in c e

k

E 1 = ( k | V | k ) = ( 0 | ( σ x ) | 0 ) = 0 ( a n d s a m e f o r ( 1 | ( σ x ) | 1 ) ) . T h e n w e c a n c a lc u la t e t h e fi r s t o r d e r e ig e n s t a t e :

1

1

0

1

z

x

2 ω

x

2 ω

ϕ 1 = | 0 ) + ( E 0 H ) 1 P V | 0 ) = | 0 ) + [ ω ( 1 1 σ ) ] 1 | 1 ) ( 1 | ǫ σ | 0 ) = | 0 ) + 1 ǫ | 1 ) ( 1 | σ | 0 ) = | 0 ) + ǫ | 1 )

2 2

s im ila r ly , w e fi n d ϕ 1 = | 1 ) ǫ | 0 ) . F in a lly , t h e s e c o n d o r d e r e n e r g y s h if t is E 2 = | V 1 2 | = ( ǫ )

in a g r e e m e n t

1 2

2 2 ω

w it h t h e r e s u lt f r o m t h e s e r ie s e x p a n s io n .

1 E 0 E 0 2 ω

W e c a n a ls o lo o k a t t h e le v e l a n t i- c r o s s in g : If w e v a r y t h e e n e r g y ω a r o u n d z e r o , t h e t w o e n e r g y le v e ls c r o s s e a c h o t h e r .

Eigenvalues

Ω

F i g . 1 8 : Le v e l a n t i c r o s s i n g : E i g e n v a l u e s o f t h e H a mi l t o n i a n H = ω σ z + ǫ σ x a s a f u n c t i o n o f ω . D a s h e d l i n e s : = 0 . R e d l i n e s : = / 0 s h o w i n g t h e a n t i c r o s s i n g .

1 1 . 1 . 2 D e g e n e r a t e c a s e

H

If t h e r e a r e d e g e n e r a t e ( o r q u a s i- d e g e n e r a t e ) e ig e n v a lu e s o f t h e u n p e r t u r b e d H a m ilt o n ia n 0 , t h e e x p a n s io n u s e d a b o v e is n o lo n g e r v a lid . T h e r e a r e t w o p r o b le m s :

| )

| ) | )

1 . If k , k , ... h a v e t h e s a m e e ig e n v a lu e , w e c a n c h o o s e a n y c o m b in a t io n o f t h e m a s t h e u n p e r t u r b e d e ig e n k e t . B u t t h e n , if w e w e r e t o fi n d t h e p e r t u r b e d e ig e n k e t ψ k , t o w h ic h s t a t e w o u ld t h is g o t o w h e n ǫ 0 ?

2 . T h e t e r m R k = P k c a n b e s in g u la r f o r t h e d e g e n e r a t e e ig e n v a lu e s .

k

E ( 0 ) H 0

H d . W e c a n t h e n d e fi n e t h e p r o j e c t o r s Q d =

i

d

k H

| k i ) ( k i | a n d P d = 1 1 Q d . T h e s e p r o j e c t o r s a ls o d e fi n e s u b s p a c e s

A s s u m e t h e r e is a d - f o ld d e g e n e r a c y o f t h e e i L g e n v a lu e E d , w it h t h e u n p e r t u r b e d e ig e n k e t s { | k i ) } f o r m in g a s u b s p a c e

o f t h e t o t a l H ilb e r t s p a c e H t h a t w e w ill c a ll H d ( s p a n n e d b y Q d ) a n d H d ¯ ( s p a n n e d b y P d ) . N o t ic e t h a t b e c a u s e o f t h e ir n a t u r e o f p r o j e c t o r s , w e h a v e t h e f o llo w in g id e n t it ie s :

d d

P 2 = P d , Q 2 = Q d , P d Q d = Q d P d = 0 a n d P d + Q d = 1 1 .

W e t h e n r e w r it e t h e e ig e n v a lu e e q u a t io n a s :

( H 0 + ǫ V ) | ϕ k ) = E k | ϕ k ) H 0 ( Q d + P d ) | ϕ k ) + ǫ V ( Q d + P d ) | ϕ k ) = E k ( Q d + P d ) | ϕ k )

( Q d + P d ) H 0 | ϕ k ) + ǫ V ( Q d + P d ) | ϕ k ) = E k ( Q d + P d ) | ϕ k )

H H

w h e r e w e u s e d t h e f a c t t h a t [ 0 , Q d ] = [ 0 , P d ] = 0 s in c e t h e p r o j e c t o r s a r e d ia g o n a l in t h e H a m ilt o n ia n b a s is . W e t h e n m u lt ip ly f r o m t h e le f t b y Q d a n d P d , o b t a in in g 2 e q u a t io n s :

1 . P d × [( Q d + P d ) H 0 | ϕ k ) + ǫ V ( Q d + P d ) | ϕ k ) ] = P d × ( E k ( Q d + P d ) | ϕ k ) )

H 0 P d | ϕ k ) + ǫ P d V ( Q d + P d ) | ϕ k ) = E k P d | ϕ k )

2 . Q d × [( Q d + P d ) H 0 | ϕ k ) + ǫ V ( Q d + P d ) | ϕ k ) ] = Q d × ( E k ( Q d + P d ) | ϕ k ) )

H 0 Q d | ϕ k ) + ǫ Q d V ( Q d + P d ) | ϕ k ) = E k Q d | ϕ k )

a n d w e s im p lif y t h e n o t a t io n b y s e t t in g | ψ k ) = P d | ϕ k ) a n d | χ k ) = Q d | ϕ k )

H 0 | ψ k ) + ǫ P d V ( | χ k ) + | ψ k ) ) = E k | ψ k ) H 0 | χ k ) + ǫ Q d V ( | χ k ) + | ψ k ) ) = E k | χ k )

w h ic h g iv e s a s e t o f c o u p le d e q u a t io n s in | ψ k ) a n d | χ k ) :

1 . ǫ P d V | χ k ) = ( E k H 0 ǫ P d V P d ) | ψ k )

2 . ǫ Q d V | ψ k ) = ( E k H 0 ǫ Q d V Q d ) | χ k )

N o w ( E k H 0 ǫ P d V P d ) 1 is fi n a lly w e ll d e fi n e d in t h e P d s u b s p a c e , s o t h a t w e c a n s o lv e f o r | ψ k ) f r o m ( 1 . ) :

| ψ k ) = ǫ P d ( E k H 0 ǫ P d V P d ) 1 P d V | χ k )

a n d b y in s e r t in g t h is in ( 2 . ) w e fi n d

( E k H 0 ǫ Q d V Q d ) | χ k ) = ǫ 2 Q d V P d ( E k H 0 ǫ P d V P d ) 1 P d V | χ k ) .

If w e k e e p o n ly t h e fi r s t o r d e r in ǫ in t h is e q u a t io n w e h a v e :

[( E k E d ) ǫ Q d V Q d ] | χ k ) = 0 w h ic h is a n e q u a t io n d e fi n e d o n t h e s u b s p a c e H d o n ly .

W e n o w c a ll U d = Q d V Q d t h e p e r t u r b a t io n H a m ilt o n ia n in t h e H d s p a c e a n d k = ( E k E d ) 1 1 d , t o g e t :

( k ǫ U d ) | χ k ) = 0

) ) )

O f t e n it is p o s s ib le t o j u s t d ia g o n a liz e U d ( if t h e d e g e n e r a t e s u b s p a c e is s m a ll e n o u g h , f o r e x a m p le f o r a s im p le d o u b le d e g e n e r a c y ) a n d n o t ic e t h a t o f c o u r s e k is a lr e a d y d ia g o n a l. O t h e r w is e o n e c a n a p p ly p e r t u r b a t io n t h e o r y t o t h is

i i i

) )

s u b s p a c e . T h e n w e w ill h a v e f o u n d s o m e ( e x a c t o r a p p r o x im a t e ) e ig e n s t a t e s o f U d , k ( 0 ) , s .t . U d k ( 0 ) = u i k ( 0 )

i i

a n d H 0 k ( 0 ) = E d k ( 0 ) , i . T h u s , t h is s t e p s e t s w h a t u n p e r t u r b e d e ig e n s t a t e s w e s h o u ld c h o o s e in t h e d e g e n e r a t e s u b s p a c e , h e n c e s o lv in g t h e fi r s t is s u e o f d e g e n e r a t e p e r t u r b a t io n t h e o r y .

W e n o w w a n t t o lo o k a t t e r m s ǫ 2 in

2

k

0

d

k

d

d

k

0

ǫ P d V P d )

d

k

( E H ǫ U ) | χ ) = ǫ Q V P ( E H 1 P V | χ )

w h e r e w e n e g le c t e d t e r m s h ig h e r t h a n s e c o n d o r d e r . R e a r r a n g in g t h e t e r m s , w e h a v e :

E k | χ k ) = [ H 0 + ǫ U d + ǫ 2 Q d V P d ( E k H 0 ) 1 P d V ] | χ k ) ( H ˜ 0 + V ˜ ) | χ k ) = E k | χ k )

w it h

H ˜ 0 = H 0 + ǫ U d V ˜ = ǫ Q d V P d ( E k H 0 ) 1 P d V Q d

k

If t h e r e a r e n o d e g e n e r a c ie s le f t in H ˜ 0 , w e c a n s o lv e t h is p r o b le m b y T IP T a n d fi n d χ ( n ) ) .

F o r e x a m p le , t o fi r s t o r d e r , w e h a v e

j i k ( 0 )

k , i

χ ( 1 ) )

L k ( 0 ) | V ˜ | k ( 0 ) ) )

=

j / / = i

ǫ ( u i u j )

j

a n d u s in g t h e e x p lic it f o r m o f t h e m a t r ix e le m e n t V ˜ i j = ( k ( 0 ) | V ˜ | k ( 0 ) ) ,

j i

) L k ( 0 ) V | h ) ( h | V k ( 0 ) )

V ˜ = k ( 0 ) ǫ 2 V P ( E 0 H ) 1 P V k ( 0 )

= ǫ 2

j i

w e o b t a in :

i j j

d d 0 d i

E ( 0 ) E ( 0 )

h / H d d h

χ ( 1 ) )

= ǫ L ( k j | V | h ) ( h | V | k i )

k ( 0 ) )

k , i

( 0 ) ( 0 )

i d h

j = / /

( u i u j ) E ( 0 ) E ( 0 ) j

F in a lly , w e n e e d t o a d d | χ ) a n d | ψ ) t o fi n d t h e t o t a l v e c t o r :

E ( 0 ) E ( 0 )

) L L D k ( 0 ) V | h )

) ( h | V k ( 0 ) )

k

E 0 E ( 0 ) ( u i u j ) j

d h j / = i d

ϕ ( 1 ) =

( h | V | k i ) | h ) + ǫ

h / H d

j k ( 0 ) i

h

( 0 )

k

j

ϕ ( 1 )

=

i

E 0 E ( 0 )

| h ) + ǫ

j

( u i u j )

k ( 0 )

) L ( h | V | k )

h / H d

d h

L ( k | V | h ) )

j = /

i

E x a m p l e : D e g e n e r a te T L S

C o n s id e r t h e H a m ilt o n ia n H = ω σ z + ǫ σ x . W e a lr e a d y s o lv e d t h is H a m ilt o n ia n , b o t h d ir e c t ly a n d w it h T IP T . N o w c o n s id e r t h e c a s e ω 0 a n d a s lig h t ly m o d ifi e d H a m ilt o n ia n :

H = ( ω 0 + ω ) | 0 ) ( 0 | + ( ω 0 ω ) | 1 ) ( 1 | + ǫ σ x = ω 0 1 1 + ω σ z + ǫ σ x .

2

W e c o u ld s o lv e e x a c t ly t h e s y s t e m f o r ω = 0 , s im p ly fi n d in g E 0 , 1 = ω 0 ± ǫ a n d | ϕ ) 0 , 1 = ) = 1 ( | 0 ) ± | 1 ) ) . W e

c a n a ls o a p p ly T IP T .

| ) | )

H o w e v e r t h e t w o e ig e n s t a t e s 0 , 1 a r e ( q u a s i- ) d e g e n e r a t e t h u s w e n e e d t o a p p ly d e g e n e r a t e p e r t u r b a t io n t h e o r y . In p a r t ic u la r , a n y b a s is a r is in g f r o m a r o t a t io n o f t h e s e t w o b a s is s t a t e s c o u ld b e a p r io r i a g o o d b a s is , s o w e n e e d fi r s t t o o b t a in t h e c o r r e c t z e r o t h o r d e r e ig e n v e c t o r s . In t h is v e r y s im p le c a s e w e h a v e H d = H ( t h e t o t a l H ilb e r t s p a c e ) a n d H d ¯ = 0 , o r in o t h e r w o r d s , Q d = 1 1 , P d = 0 . W e fi r s t n e e d t o d e fi n e a n e q u a t io n in t h e d e g e n e r a t e s u b s p a c e o n ly :

( k ǫ U d ) | χ k ) = 0

w h e r e U d = Q d V Q d . H e r e w e h a v e : U d = V = σ x . T h u s w e o b t a in t h e c o r r e c t z e r o t h o r d e r e ig e n v e c t o r s f r o m d ia g o n a liz in g t h is H a m ilt o n ia n . N o t s u r p r is in g ly , t h e y a r e :

ϕ

( 0 ) ) 1

0 , 1

= ) = 2 ( | 0 ) ± | 1 ) ) .

w it h e ig e n v a lu e s : E 0 , 1 = ω 0 ± ǫ . W e c a n n o w c o n s id e r h ig h e r o r d e r s , f r o m t h e e q u a t io n :

( H ˜ 0 + V ˜ ) | χ k ) = E k | χ k )

w it h H ˜ 0 = ω 0 1 1 + ǫ σ x a n d V ˜ = 0 . T h u s in t h is c a s e , t h e r e a r e n o h ig h e r o r d e r s a n d w e s o lv e d t h e p r o b le m .

E x a m p l e : S p i n - 1 s y s te m

W e c o n s id e r a s p in - 1 s y s t e m ( t h a t is , a s p in s y s t e m w it h S = 1 d e fi n e d in a 3 - d im e n s io n a l H ilb e r t s p a c e ) . T h e m a t r ix r e p r e s e n t a t io n f o r t h e a n g u la r m o m e n t u m o p e r a t o r s S x a n d S z in t h is H ilb e r t s p a c e a r e :

1

S x = 2

0 1 0

, S z =

1 0 0

0 0 0

1 0 1

0 1 0 0 0 1

2

T h e H a m ilt o n ia n o f t h e s y s t e m is H = H 0 + ǫ V w it h

G iv e n t h a t

H 0 = S z ; V = S x + S z

S z = 0 0 0

0 0 1

2 1 0 0

T h e m a t r ix r e p r e s e n t a t io n o f t h e t o t a l H a m ilt o n ia n is :

+ ǫ ǫ 0

ǫ

2

2 2

0 ǫ

2

H =

0 ǫ

ǫ

P o s s ib le e ig e n s t a t e s o f t h e u n p e r t u r b e d H a m ilt o n ia n a r e | + 1 ) , | 0 ) , | 1 ) :

1 0 0

| + 1 ) = 0 , | 0 ) = 1 , |− 1 ) = 0 ,

0 0 1

| ) | )

w it h e n e r g ie s + , 0 , + r e s p e c t iv e ly . H o w e v e r , a n y c o m b in a t io n o f + 1 a n d 1 is a v a lid e ig e n s t a t e , f o r e x a m p le w e c o u ld h a v e c h o s e n :

1 1

1 1

1

2

| + 1 ) = 2 0 ,

|− 1 ) = 0

1

T h is is t h e c a s e b e c a u s e t h e t w o e ig e n s t a t e s a r e d e g e n e r a t e . S o h o w d o w e c h o o s e w h ic h a r e t h e c o r r e c t e ig e n s t a t e s t o z e r o t h o r d e r 3 7 ? W e n e e d t o fi r s t c o n s id e r t h e t o t a l H a m ilt o n ia n in t h e d e g e n e r a t e s u b s p a c e .

z

T h e d e g e n e r a t e s u b s p a c e is t h e s u b s p a c e o f t h e t o t a l H ilb e r t s p a c e H s p a n n e d b y t h e b a s is | + 1 ) , |− 1 ) ; w e c a n c a ll t h is s u b s p a c e H Q . W e c a n o b t a in t h e H a m ilt o n ia n in t h is s u b s p a c e b y u s in g t h e p r o j e c t o r o p e r a t o r Q : H Q = Q H Q , w it h Q = | + 1 ) ( + 1 | + |− 1 ) ( 1 | = S 2 . T h e n :

2 2

H Q = Q ( S z + ǫ ( S z + S x ) ) Q = S z + ǫ S z

( N o t ic e t h is c a n b e o b t a in e d b y d ir e c t m a t r ix m u lt ip lic a t io n o r m u lt ip ly in g t h e o p e r a t o r s ) . In m a t r ix f o r m :

H Q =

+ ǫ 0 0

0 0 0

0 0 ǫ

H Q =

+ ǫ

(

0

0

)

ǫ

| ) |− )

w h e r e in t h e la s t lin e I r e p r e s e n t e d t h e m a t r ix in t h e 2 - d im e n s io n a l s u b p s a c e H Q . W e c a n n o w e a s ily s e e t h a t t h e c o r r e c t e ig e n v e c t o r s f o r t h e u n p e r t u r b e d H a m ilt o n ia n w e r e t h e o r ig in a l + 1 a n d 1 a f t e r a ll. F r o m t h e H a m ilt o n ia n in t h e H Q s u b s p a c e w e c a n a ls o c a lc u la t e t h e fi r s t o r d e r c o r r e c t io n t o t h e e n e r g y f o r t h e s t a t e s in t h e d e g e n e r a t e

s u b s p a c e . T h e s e a r e j u s t E ( 1 ) E ( 0 ) = + ǫ a n d E ( 1 ) E ( 0 ) = ǫ .

+ 1 + 1

1 1

( 1 )

N o w w e w a n t t o c a lc u la t e t h e fi r s t o r d e r c o r r e c t io n t o t h e e ig e n s t a t e s 1 ) . T h is w ill h a v e t w o c o n t r ib u t io n s : | ψ ) ± 1 =

± 1

± 1

Q | ψ ) ( 1 ) + P | ψ ) ( 1 ) w h e r e P = 1 1 Q = | 0 ) ( 0 | is t h e c o m p le m e n t a r y p r o j e c t o r t o Q . W e fi r s t c a lc u la t e t h e fi r s t t e r m

in t h e f o llo w in g w a y . W e r e d e fi n e a n u n p e r t u r b e d H a m ilt o n ia n in t h e s u b s p a c e H Q :

z

H ˜ 0 = H Q = Q H Q = S 2 + ǫ S z

a n d t h e p e r t u r b a t io n in t h e s a m e s u b s p a c e is ( f o llo w in g S a k u r a i) :

V ˜ = V

= ǫ Q ( V P ( H ) 1 P V ) Q = ǫ Q ( S

+ S ) | 0 ) ( 0 | ( | 0 ) ( 0 | ) 1 | 0 ) ( 0 | ( S

ǫ

+ S ) Q = Q S P S Q

Q

In m a t r ix f o r m :

0

V Q = 2

ǫ

z x

0 0 0

1 0 1

V Q = 2

1 0 1

z x

= 2 ( 1 1 + σ x )

ǫ ( 1 1 ) ǫ

1 1

x x

N o w t h e p e r t u r b e d e ig e n s t a t e s c a n b e c a lc u la t e d a s :

k

Q | ψ ) ( 1 ) = | k ) + ǫ

h V Q k

L | )

E E

( | | ) h

( 1 ) ( 1 )

h H Q = k k h

3 7 H e r e b y c o r r e c t e i g e n s t a t e s I m e a n s t h e e i g e n s t a t e s t o w h i c h t h e e i g e n s t a t e s o f t h e t o t a l H a mi l t o n i a n w i l l t e n d t o w h e n

ǫ 0

In o u r c a s e :

Q | ψ ) ( 1 ) = | + 1 ) + ǫ ( 1 | V Q | + 1 ) |− 1 ) = | + 1 ) + ǫ ǫ ( 1 | ( 1 1 + σ x ) | + 1 ) |− 1 ) = | + 1 ) + ǫ |− 1 ) ,

E E

+ 1 ( 1 ) ( 1 ) 2 2 ǫ 4

+ 1 1

( 1 ) ǫ

1

4

Q ψ = |− 1 ) | 1 )

In o r d e r t o c a lc u la t e P ψ ( 1 ) w e c a n j u s t u s e t h e u s u a l f o r m u la f o r n o n - d e g e n e r a t e p e r t u r b a t io n t h e o r y , b u t s u m m in g

± 1

o n ly o v e r t h e s t a t e s o u t s id e H Q . H e r e t h e r e ’s o n ly o n e o f t h e m | 0 ) , s o :

± 1 E ± 1 E 0 2

P | ψ ) ( 1 ) = ǫ ( 0 | V 1 ) | 0 ) = ǫ

| 0 )

F in a lly , t h e e ig e n s t a t e s t o fi r s t o r d e r a r e :

( 1 ) ǫ ǫ

| ψ + 1 ) = | + 1 ) + 4 |− 1 ) + 2 | 0 )

a n d

( 1 ) ǫ ǫ

| ψ 1 ) = |− 1 ) 4 | 1 ) + 2 | 0 )

±

T h e e n e r g y s h if t t o s e c o n d o r d e r is c a lc u la t e d f r o m ( 2 ) = L

| ( h | V 1 ) | 2

:

E ( 0 )

h / H Q h

( 2 ) |( 0 | V | + 1 ) | 2 ǫ 2

a n d

+ 1 = = 2

= =

( 2 ) |( 0 | V |− 1 ) | 2 ǫ 2

1 2

T o c a lc u la t e t h e p e r t u r b a t io n e x p a n s io n f o r | 0 ) a n d it s e n e r g y , w e u s e n o n - d e g e n e r a t e p e r t u r b a t io n t h e o r y , t o fi n d :

+ 1

( 1 ) ( ( + 1 | V | 0 ) ( 1 | V | 0 ) ) ǫ | + 1 ) + |− 1 )

( 1 ) = ( 0 | V | 0 ) = 0

0

a n d ( 2 ) = ǫ 2 .

| ψ + 1 ) = | 0 ) + ǫ

| + 1 ) +

|− 1 ) = 2

1 1 . 1 . 3 T h e S t a r k e ff e c t

W e a n a ly z e t h e in t e r a c t io n o f a h y d r o g e n a t o m w it h a ( c la s s ic a l) e le c t r ic fi e ld , t r e a t e d a s a p e r t u r b a t io n 3 8 . D e p e n d in g o n t h e h y d r o g e n ’s s t a t e , w e w ill n e e d t o u s e T IP T o r d e g e n e r a t e T IP T , t o fi n d e it h e r a q u a d r a t ic o r lin e a r ( in t h e fi e ld ) s h if t o f t h e e n e r g y . T h e s h if t in e n e r g y is u s u a lly c a lle d S t a r k s h if t o r S t a r k e ff e c t a n d it is t h e e le c t r ic a n a lo g u e o f t h e Z e e m a n e ff e c t , w h e r e t h e e n e r g y le v e l is s p lit in t o s e v e r a l c o m p o n e n t s d u e t o t h e p r e s e n c e o f a m a g n e t ic fi e ld . M e a s u r e m e n t s o f t h e S t a r k e ff e c t u n d e r h ig h fi e ld s t r e n g t h s c o n fi r m e d t h e c o r r e c t n e s s o f t h e q u a n t u m t h e o r y o v e r t h e B o h r m o d e l.

| |

S u p p o s e t h a t a h y d r o g e n a t o m is s u b j e c t t o a u n if o r m e x t e r n a l e le c t r ic fi e ld , o f m a g n it u d e E , d ir e c t e d a lo n g t h e

z - a x is . T h e H a m ilt o n ia n o f t h e s y s t e m c a n b e s p lit in t o t w o p a r t s . N a m e ly , t h e u n p e r t u r b e d H a m ilt o n ia n ,

e

p 2 H 0 = 2 m

3 8 T h i s s e c t i o n f o l l o w s P r o f . F i t z p a t r i c k o n l i n e l e c t u r e s

e 2

,

4 π ǫ 0 r

a n d t h e p e r t u r b in g H a m ilt o n ia n

H 1 = e | E | z .

| )

N o t e t h a t t h e e le c t r o n s p in is ir r e le v a n t t o t h is p r o b le m ( s in c e t h e s p in o p e r a t o r s a ll c o m m u t e w it h H 1 ) , s o w e c a n ig n o r e t h e s p in d e g r e e s o f f r e e d o m o f t h e s y s t e m . H e n c e , t h e e n e r g y e ig e n s t a t e s o f t h e u n p e r t u r b e d H a m ilt o n ia n a r e c h a r a c t e r iz e d b y t h r e e q u a n t u m n u m b e r s t h e r a d ia l q u a n t u m n u m b e r n , a n d t h e t w o a n g u la r q u a n t u m n u m b e r s l a n d m . L e t u s d e n o t e t h e s e s t a t e s a s t h e n l m , a n d le t t h e ir c o r r e s p o n d in g e n e r g y e ig e n v a lu e s b e t h e E n lm . W e u s e T IP T t o c a lc u la t e t h e e n e r g y s h if t t o fi r s t a n d s e c o n d o r d e r .

A . T h e q u a d r a ti c S ta r k e ff e c t

.

W e fi r s t w a n t t o s t u d y t h e p r o b le m u s in g n o n - d e g e n e r a t e p e r t u r b a t io n t h e o r y , t h u s a s s u m in g t h a t t h e u n p e r t u r b e d s t a t e s a r e n o n - d e g e n e r a t e . A c c o r d in g t o T IP T , t h e c h a n g e in e n e r g y o f t h e e ig e n s t a t e c h a r a c t e r iz e d b y t h e q u a n t u m n u m b e r s n , l , m in t h e p r e s e n c e o f a s m a ll e le c t r ic fi e ld is g iv e n b y

2

E n lm = e | E | ( n , l , m | z | n , l , m ) + e

| E | 2

L

n , l , m = n , l, m

|( n , l , m | z | n , l , m ) | 2 E n lm E n l m

( | | )

T h is e n e r g y - s h if t is k n o w n a s t h e S t a r k e ff e c t . T h e s u m o n t h e r ig h t - h a n d s id e o f t h e a b o v e e q u a t io n s e e m s v e r y c o m p lic a t e d . H o w e v e r , it t u r n s o u t t h a t m o s t o f t h e t e r m s in t h is s u m a r e z e r o . T h is f o llo w s b e c a u s e t h e m a t r ix e le m e n t s n , l , m z n , l , m a r e z e r o f o r v ir t u a lly a ll c h o ic e s o f t h e t w o s e t s o f q u a n t u m n u m b e r n , l , m a n d n , l , m . L e t u s t r y t o fi n d a s e t o f r u le s w h ic h d e t e r m in e w h e n t h e s e m a t r ix e le m e n t s a r e n o n - z e r o . T h e s e r u le s a r e u s u a lly r e f e r r e d t o a s t h e s e le c t io n r u le s f o r t h e p r o b le m in h a n d .

N o w , s in c e [ L z , z ] = 0 , it f o llo w s t h a t

( n , l , m | [ L z , z ] | n , l , m ) = ( n , l , m | L z z z L z | n , l , m ) = l ( m m ) ( n , l , m | z | n , l , m ) = 0 .

H e n c e , o n e o f t h e s e le c t io n r u le s is t h a t t h e m a t r ix e le m e n t ( n , l , m | z | n , l , m ) is z e r o u n le s s

m = m .

T h e s e le c t io n r u le f o r l c a n b e s im ila r ly c a lc u la t e d f r o m p r o p e r t ie s o f t h e t o t a l a n g u la r m o m e n t u m L 2 a n d it s c o m m u t a t o r w it h z . W e o b t a in t h a t t h e m a t r ix e le m e n t is z e r o u n le s s

l = l ± 1 .

2

.

A p p lic a t io n o f t h e s e s e le c t io n r u le s t o t h e p e r t u r b a t io n e q u a t io n s h o w s t h a t t h e lin e a r ( fi r s t o r d e r ) t e r m is z e r o , w h ile t h e s e c o n d o r d e r t e r m y ie ld s

E n lm = e 2

| E |

L |( n , l , m | z | n , l , m ) | 2

n , l = l ± 1

E n lm E n l m

O n ly t h o s e t e r m s w h ic h v a r y q u a d r a t ic a lly w it h t h e fi e ld - s t r e n g t h h a v e s u r v iv e d . H e n c e , t h is t y p e o f e n e r g y - s h if t o f a n a t o m ic s t a t e in t h e p r e s e n c e o f a s m a ll e le c t r ic fi e ld is k n o w n a s t h e q u a d r a t ic S t a r k e ff e c t .

N o w , t h e e le c t r ic p o la r iz a b ilit y o f a n a t o m is d e fi n e d in t e r m s o f t h e e n e r g y - s h if t o f t h e a t o m ic s t a t e a s f o llo w s :

2

E = 1 α | E | 2 .

H e n c e , w e c a n w r it e

α n lm = 2 e 2

L |( n , l , m | z | n , l , m ) | 2

.

n , l = l ± 1

E n l m E n lm

A lt h o u g h w r it t e n f o r a g e n e r a l s t a t e , t h e e q u a t io n s a b o v e a s s u m e t h e r e is n o d e g e n e r a c y o f t h e u n p e r t u r b e d e ig e n ­ v a lu e s . H o w e v e r , t h e u n p e r t u r b e d e ig e n s t a t e s o f a h y d r o g e n a t o m h a v e e n e r g ie s w h ic h o n ly d e p e n d o n t h e r a d ia l q u a n t u m n u m b e r n , t h u s t h e y h a v e h ig h ( a n d in c r e a s in g w it h n ) o r d e r o f d e g e n e r a c y . W e c a n t h e n o n ly a p p ly t h e a b o v e r e s u lt s t o t h e n = 1 e ig e n s t a t e ( s in c e f o r n 1 t h e r e w ill b e c o u p lin g t o d e g e n e r a t e e ig e n s t a t e s w it h t h e s a m e

v a lu e o f n b u t d iff e r e n t v a lu e s o f l ) . T h u s , a c c o r d in g t o n o n - d e g e n e r a t e p e r t u r b a t io n t h e o r y , t h e p o la r iz a b ilit y o f t h e g r o u n d - s t a t e ( i.e ., n = 1 ) o f a h y d r o g e n a t o m is g iv e n b y

α = 2 e .

2 L |( 1 , 0 , 0 | z | n , 1 , 0 ) | 2

n > 1

E n E 1

H e r e , w e h a v e m a d e u s e o f t h e f a c t t h a t E n 1 0 = E n 0 0 = E n .

T h e s u m in t h e a b o v e e x p r e s s io n c a n b e e v a lu a t e d a p p r o x im a t e ly b y n o t in g t h a t

0

e 2

w h e r e a 0

E n = 8 π ǫ

m e 2

= 4 π ǫ 0 k 2 is t h e B o h r r a d iu s . H e n c e , w e c a n w r it e

e

a n 2 ,

0

0

0

3 e 2

w h ic h im p lie s t h a t t h e p o la r iz a b ilit y is

E n E 1 E 2 E 1 = 4 8 π ǫ a ,

1 6

α < 4 π ǫ 0 a 0

3

|( 1 , 0 , 0 | z | n , 1 , 0 ) | 2 .

L

n > 1

3

H o w e v e r , t h a n k s t o t h e s e le c t io n r u le s w e h a v e , L n > 1 |( 1 , 0 , 0 | z | n , 1 , 0 ) | 2 = ( 1 , 0 , 0 | z 2 | 1 , 0 , 0 ) = 1 ( 1 , 0 , 0 | r 2 | 1 , 0 , 0 ) ,

w h e r e w e h a v e m a d e u s e o f t h e f a c t t h e t h e g r o u n d - s t a t e o f h y d r o g e n is s p h e r ic a lly s y m m e t r ic . F in a lly , f r o m

0

( 1 , 0 , 0 | r 2 | 1 , 0 , 0 ) = 3 a 2 w e c o n c lu d e t h a t

1 6

0

α < 4 π ǫ 0

3

a 3 5 . 3 4 π ǫ 0

0

a 3 .

T h e e x a c t r e s u lt ( w h ic h c a n b e o b t a in e d b y s o lv in g S c h r d in g e r ’s e q u a t io n in p a r a b o lic c o o r d in a t e s ) is

9

0

α = 4 π ǫ 0

2

a 3 = 4 . 5 4 π ǫ 0

0

a 3 .

B . T h e l i n e a r S ta r k e ff e c t

W e n o w e x a m in e t h e e ff e c t o f a n e le c t r ic fi e ld o n t h e e x c it e d e n e r g y le v e ls n 1 o f a h y d r o g e n a t o m . F o r in s t a n c e , c o n s id e r t h e n = 2 s t a t e s . T h e r e is a s in g le l = 0 s t a t e , u s u a lly r e f e r r e d t o a s 2 s , a n d t h r e e l = 1 s t a t e s ( w it h m = 1 , 0 , 1 ) , u s u a lly r e f e r r e d t o a s 2 p . A ll o f t h e s e s t a t e s p o s s e s s t h e s a m e e n e r g y , E 2 = e 2 / ( 3 2 π ǫ 0 a 0 ) . B e c a u s e o f t h e d e g e n e r a c y , t h e t r e a t m e n t a b o v e is n o lo n g e r v a lid a n d in o r d e r t o a p p ly p e r t u r b a t io n t h e o r y , w e h a v e t o r e c u r t o d e g e n e r a t e p e r t u r b a t io n t h e o r y .

W e fi r s t n e e d t o U d = Q d V Q d , w h e r e Q d is t h e p r o j e c t o r o b t a in e d f r o m t h e d e g e n e r a t e 2 s a n d 2 p s t a t e s ( t h a t is , t h e o p e r a t o r t h a t p r o j e c t in t o t h e d e g e n e r a t e s u b s p a c e ) . T h is o p e r a t o r is ,

0 ( 2 , 0 , 0 | z | 2 , 1 , 0 ) 0 0

d | | ( | | )

U = e E 2 , 1 , 0 z 2 , 0 , 0 0 0 0

0 0 0 0

0 0 0 0

0 ( 2 , 0 , 0 | z | 2 , 1 , 0 ) ,

( 2 , 1 , 0 z 2 , 0 , 0 0

)

( | | )

| ) | ) | ) | )

w h e r e t h e r o w s a n d c o lu m n s c o r r e s p o n d t o t h e 2 , 0 , 0 , 2 , 1 , 0 , 2 , 1 , 1 a n d 2 , 1 , 1 s t a t e s , r e s p e c t iv e ly a n d in t h e s e c o n d s t e p w e r e d u c e t h e o p e r a t o r t o t h e d e g e n e r a t e s u b s p a c e o n ly . T o s im p lif y t h e m a t r ix w e u s e d t h e s e le c t io n r u le s , w h ic h t e ll u s t h a t t h e m a t r ix e le m e n t o f b e t w e e n t w o h y d r o g e n a t o m s t a t e s is z e r o u n le s s t h e s t a t e s p o s s e s s t h e s a m e n q u a n t u m n u m b e r , a n d l q u a n t u m n u m b e r s w h ic h d iff e r b y u n it y . It is e a s ily d e m o n s t r a t e d , f r o m t h e e x a c t f o r m s o f t h e 2 s a n d 2 p w a v e - f u n c t io n s , t h a t

( 2 , 0 , 0 | z | 2 , 1 , 0 ) = ( 2 , 1 , 0 | z | 2 , 0 , 0 ) = 3 a 0 .

| | | |

( 0 ) ) | 2 , 0 , 0 ) + | 2 , 1 , 0 ) 1 ( 1 )

It c a n b e s e e n , b y in s p e c t io n , t h a t t h e e ig e n v a lu e s o f U d a r e u 1 = 3 e a 0 E , u 2 = 3 e a 0 E , w it h c o r r e s p o n d in g e ig e n v e c t o r s

k 1 = 2 = 2 1 ,

2

2

2

k ( 0 ) ) = | 2 , 0 , 0 ) | 2 , 1 , 0 ) =

1 ( 1 )

1

In t h e a b s e n c e o f a n e le c t r ic fi e ld , a ll o f t h e s e s t a t e s p o s s e s s t h e s a m e e n e r g y , E 2 . T h e fi r s t - o r d e r e n e r g y s h if t s in d u c e d

b y a n e le c t r ic fi e ld a r e g iv e n b y

E 1 = + 3 e a 0 | E | ,

E 2 = 3 e a 0 | E | ,

| |

T h u s , t h e e n e r g ie s o f s t a t e s 1 a n d 2 a r e s h if t e d u p w a r d s a n d d o w n w a r d s , r e s p e c t iv e ly , b y a n a m o u n t 3 e a 0 E in t h e p r e s e n c e o f a n e le c t r ic fi e ld . S t a t e s 1 a n d 2 a r e o r t h o g o n a l lin e a r c o m b in a t io n s o f t h e o r ig in a l 2 s a n d 2 p ( m = 0 ) s t a t e s . N o t e t h a t t h e e n e r g y s h if t s a r e lin e a r in t h e e le c t r ic fi e ld - s t r e n g t h , s o t h is is a m u c h la r g e r e ff e c t t h a t t h e q u a d r a t ic e ff e c t d e s c r ib e d in t h e p r e v io u s s e c t io n .

T h e e n e r g ie s o f s t a t e s 2 p ( m = 1 ) a n d 2 p ( m = - 1 ) ( w h ic h a r e o u t s id e t h e d e g e n e r a t e s u b s p a c e ) a r e n o t a ff e c t e d t o fi r s t ­ o r d e r ( a s w e a lr e a d y s a w a b o v e f o r t h e n o n - d e g e n e r a t e c a s e ) . O f c o u r s e , t o s e c o n d - o r d e r t h e e n e r g ie s o f t h e s e s t a t e s a r e s h if t e d b y a n a m o u n t w h ic h d e p e n d s o n t h e s q u a r e o f t h e e le c t r ic fi e ld - s t r e n g t h , t h e q u a d r a t ic s h if t f o u n d p r e v io u s ly . N o t e t h a t t h e lin e a r S t a r k e ff e c t d e p e n d s c r u c ia lly o n t h e d e g e n e r a c y o f t h e 2 s a n d 2 p s t a t e s . T h is d e g e n e r a c y is a s p e c ia l p r o p e r t y o f a p u r e C o u lo m b p o t e n t ia l, a n d , t h e r e f o r e , o n ly a p p lie s t o a h y d r o g e n a t o m . T h u s , a lk a li m e t a l a t o m s d o n o t e x h ib it t h e lin e a r S t a r k e ff e c t .

1 1 . 2 Ti m e - d e p e n d e n t p e r t u r b a t i o n t h e o r y

1 1 . 2 . 1 R e v i e w o f i n t e r a c t i o n p i c t u r e

W h e n fi r s t s t u d y in g t h e t im e e v o lu t io n o f Q M s y s t e m s , o n e a p p r o a c h w a s t o s e p a r a t e t h e H a m ilt o n ia n m u c h in t h e s a m e w a y w e d id a b o v e f o r T IP T . W e w r o t e ( s e e S e c t io n 5 .2 ) :

H = H 0 + V ( t )

w h e r e H 0 is a s o lv a b le H a m ilt o n ia n o f w h ic h w e a lr e a d y k n o w t h e e ig e n - d e c o m p o s it io n ,

0

H 0 | k ) = E k | k ) ,

L

( s o t h a t it is e a s y t o c a lc u la t e e .g . U 0 = e i H 0 t ) a n d V ( t ) is a p e r t u r b a t io n t h a t d r iv e s a n in t e r e s t in g ( a lt h o u g h

0

u n k n o w n ) d y n a m ic s . H e r e w e e v e n a llo w f o r t h e p o s s ib ilit y t h a t V is t im e - d e p e n d e n t . F o r a n y s t a t e | ψ ) = k c k ( 0 ) | k )

k

k

k

t h e e v o lu t io n c a n b e w r it t e n a s | ψ ) = L c ( t ) e i E t | k ) . T h is c o r r e s p o n d t o e x p lic it ly w r it in g d o w n t h e e v o lu t io n d u e

( w h ile E 0 d o n o t p la y a r o le ) .

H H

t o t h e k n o w n H a m ilt o n ia n ( if = 0 t h e n w e w o u ld h a v e c k ( t ) = c k ( 0 ) a n d t h e e v o lu t io n w o u ld b e g iv e n b y o n ly t h e p h a s e f a c t o r s ) . In o t h e r w o r d s , if w e w a n t t o c o m p a r e t h e s t a t e e v o lu t io n w it h t h e in it ia l e ig e n s t a t e s , b y c a lc u la t in g t h e o v e r la p |( k | ψ ( t ) ) | 2 , w e w o u ld b e r e a lly in t e r e s t e d o n ly in t h e d y n a m ic s d r iv e n b y V s in c e |( k | ψ ( t ) ) | 2 = | c k ( t ) | 2

k

W e d e fi n e s t a t e s in t h e in t e r a c t io n p ic t u r e b y

| ψ ) I = U 0 ( t ) | ψ ) = e i H 0 t | ψ )

S im ila r ly w e d e fi n e t h e c o r r e s p o n d in g in t e r a c t io n p ic t u r e o p e r a t o r s a s :

A I ( t ) = U 0 A U 0 V I ( t ) = U 0 V U 0

W e c a n n o w d e r iv e t h e d iff e r e n t ia l e q u a t io n g o v e r n in g t h e e v o lu t io n o f t h e s t a t e in t h e in t e r a c t io n p ic t u r e , s t a r t in g f r o m S c h r ¨ o d in g e r e q u a t io n .

t

t

t

0

t

i | ψ ) I = i ( U 0 | ψ ) ) = i ( U 0 | ψ ) + U | ψ ) )

In s e r t in g t U 0 = i H 0 U 0 a n d i t | ψ ) = H 0 | ψ ) , w e o b t a in

t

0

0

0

0

i | ψ ) = U H | ψ ) U ( H

0

+ V ) | ψ ) = U V | ψ ) .

In s e r t in g t h e id e n t it y 1 1 = U 0 U 0 , w e o b t a in = U 0 V U 0 U 0 | ψ ) = V I | ψ ) I :

i

| ψ ) I

t

= V I ( t ) | ψ ) I

T h is is a S c h r ¨ o d in g e r - lik e e q u a t io n f o r t h e v e c t o r in t h e in t e r a c t io n p ic t u r e , e v o lv in g u n d e r t h e a c t io n o f t h e o p e r a t o r

V I ( t ) o n ly .

1 1 . 2 . 2 D y so n s e r i e s

B e s id e s e x p r e s s in g t h e S c h r ¨ o d in g e r e q u a t io n in t h e in t e r a c t io n p ic t u r e , w e c a n a ls o w r it e t h e e q u a t io n f o r t h e p r o p ­ a g a t o r t h a t d e s c r ib e s t h e e v o lu t io n o f t h e s t a t e :

d t

I

I

I

I

I

d U I = i V U , | ψ ( t ) ) = U ( t ) | ψ ( 0 ) )

S in c e V I ( t ) is t im e - d e p e n d e n t , w e c a n o n ly w r it e f o r m a l s o lu t io n s f o r U I . O n e e x p r e s s io n is g iv e n b y t h e D y s o n s e r ie s .

T h e d iff e r e n t ia l e q u a t io n is e q u iv a le n t t o t h e in t e g r a l e q u a t io n

1

t

U I ( t ) = 1 1 i V I ( t ) U I ( t ) d t

0

B y it e r a t in g , w e c a n fi n d a f o r m a l s o lu t io n t o t h is e q u a t io n :

1 t 1 t 1 t

U I ( t ) = 1 1 i d t V I ( t ) + ( i ) 2 d t d t V I ( t ) V I ( t ) + . . .

0 0 0

1 t 1 t ( n 1 )

+ ( i ) n d t . . . d t ( n ) V I ( t ) . . . V I ( t ( n ) ) + . . .

0 0

T h is is t h e D y s o n s e r ie s .

1 1 . 2 . 3 F e r m i s G o l d e n R u l e

| ) H H | ) | )

L

T h e p r o b le m t h a t w e t r y t o s o lv e v ia T D P T is t o c a lc u la t e t h e t r a n s it io n p r o b a b ilit y f r o m a n in it ia l s t a t e t o a fi n a l s t a t e . C o n s id e r a n in it ia l s t a t e i w h ic h is a n e ig e n s t a t e o f 0 ( 0 i = E i i ) . T h e n in t h e in t e r a c t io n p ic t u r e w e h a v e t h e e v o lu t io n

| i ( t ) ) I = U I ( t ) | i ) = c k ( t ) | k ) , w it h c k ( t ) = ( k | U I ( t ) | i )

k

W e c a n in s e r t t h e p e r t u r b a t io n e x p a n s io n f o r U I ( t ) t o o b t a in a n e x p a n s io n f o r c k ( t ) :

c k ( t ) = ( k | 1 1 i

t t

1

1

V I ( t ) U I ( t ) d t | i ) = ( k | 1 1 i

t

1

d t V I ( t ) + ( i ) 2

d t

1 t

d t V I ( t ) V I ( t ) + . . . | i )

0 0 0 0

In t h e e x p a n s io n w e w ill o b t a in t e r m s s u c h a s ( k | V I ( t ) | i ) t h a t w e c a n s im p lif y s in c e :

( k | V I ( t ) | i ) = ( k | ( U 0 V ( t ) U 0 ) | i ) = ( U 0 k | V ( t ) | U 0 i ) = ( k | e i ω k t V ( t ) e i ω i t | i ) = ( k | V | i ) e i ω k i t = V k i ( t ) e i ω k i t w h e r e w e d e fi n e d ω j = E j / l a n d ω k i = ω k ω i . U s in g t h e s e r e la t io n s h ip s a n d t h e s e r ie s e x p a n s io n w e o b t a in :

k

c ( 0 ) ( t ) = ( k | 1 1 | i ) = δ k i

k 0

I

0

k i

k h

c ( 1 ) ( t ) = i J t ( k | V ( t ) | i ) d t = i J t V ( t ) e i ω k i t d t

k 0 0

h i

c ( 2 ) ( t ) = J t d t J t d t V

( t ) V

( t ) e i ω

t e i ω

t

k h

h i

F r o m t h is e x p a n s io n w e c a n c a lc u la t e t h e t r a n s it io n p r o b a b ilit y a s P ( i k ) = | c k ( t ) | 2 .

s in

W e fi r s t c o n s id e r t h e c a s e w h e r e t h e p e r t u r b a t io n V is t im e - in d e p e n d e n t a n d it is t u r n e d o n a t t h e t im e t = 0 . T h e n w e h a v e

c k ( t ) = i V k i e

k i

d t

= ( 1 e

k i ) = 2 i e

k i

( 1 ) 1 t i ω t

V k i

i ω t

V k i i ω

t / 2

( ω k i t )

0 ω k i ω k i 2

T h e n t o fi r s t o r d e r p e r t u r b a t io n , t h e t r a n s it io n p r o b a b ilit y is

P ( i k ) =

4 | V k i | 2

ω

2

k i

s in

2 ( ω k i t )

2

W e c a n p lo t t h is t r a n s it io n p r o b a b ilit y a s a f u n c t io n o f t h e e n e r g y s e p a r a t io n ω k i b e t w e e n t h e t w o s t a t e s . W e w o u ld e x p e c t t h a t if t h e s e p a r a t io n in e n e r g y is s m a lle r , it w ill b e e a s ie r t o m a k e t h e t r a n s it io n . T h is is in d e e d t h e c a s e , s in c e P h a s t h e s h a p e o f a s in c f u n c t io n s q u a r e .

N o t ic e t h a t t h e p e a k h e ig h t is p r o p o r t io n a l t o t 2 , w h ile t h e z e r o s a p p e a r a t 2 k π / t , t h a t is , t h e p e a k w id t h is p r o p o r t io n a l t o 1 / t ( t h e o t h e r p e a k s a r e q u it e s m a ll) . T h is m e a n s t h a t t h e p r o b a b ilit y is s ig n ifi c a n t ly d iff e r e n t t h a n

0.25

0.20

0.15

0.10

0.05

6

4

2

2

4

6

F i g . 1 9 : T r a n s i t i o n p r o b a b i l i t y

z e r o o n ly f o r ω k i t 2 π . In t e r m s o f e n e r g y , w e h a v e t h a t t∆ E l ( w h e r e w e d e fi n e d t a s t h e d u r a t io n o f t h e in t e r a c t io n ) , o r in o t h e r w o r d s , w e c a n h a v e a c h a n g e o f e n e r g y in t h e s y s t e m o n ly a t s h o r t t im e s , w h ile a t lo n g t im e s w e r e q u ir e q u a s i- c o n s e r v a t io n o f e n e r g y . C o n s id e r t h e lim it o f t h e s in c f u n c t io n :

s in ( ω t/ 2 )

lim = π δ ( ω )

t ω

T h e n , f r o m f ( x ) δ ( x ) = f ( 0 ) a n d s in c ( 0 ) = 1 , w e o b t a in

( ) ( )

s in ( ω t/ 2 ) 2 s in ( ω t/ 2 ) s in ( ω t/ 2 ) s in ( ω t/ 2 ) s in ( ω t/ 2 ) t π t

lim = lim = π δ ( ω ) = π δ ( ω ) = δ ( ω )

t ω ω t ω ω ω t/ 2 2 2

W e h a v e t h e n f o u n d t h e t r a n s it io n p r o b a b ilit y a t lo n g t im e :

2

2

k i

P ( i k ) t π t δ ( ω ) 4 | V | ,

w h ic h c o n fi r m s t h e f a c t t h a t in t h e lo n g - t im e lim it w e n e e d t o e n f o r c e e n e r g y c o n s e r v a t io n . A b e t t e r d e fi n e d q u a n t it y is t h e r a t e o f t r a n s it io n :

W ( i k ) = 2 π | V k i | 2 δ ( ω ) .

k i

k

k i 0 k

k i

N o t ic e t h a t f o r ω = 0 , f r o m c ( 1 ) ( t ) = i V J t e i ω k i t d t w e o b t a in c ( 1 ) ( t ) = i V

t a n d t h u s t h e p r o b a b ilit y

N o w w e c o n s id e r a c o n t in u u m o f fi n a l s t a t e s , a ll w it h e n e r g y E k f E i . T h e n t h e p r o b a b ilit y J o f a t r a n s it io n t o t h is

| c k ( t ) | 2 = | V k i | 2 t 2 . T h e r e is a q u a d r a t ic d e p e n d e n c e o n t im e f o r a s in g le fi n a l s t a t e .

c o n t in u u m is g iv e n b y t h e s u m o f t h e p r o b a b ilit y f o r e a c h in d iv id u a l s t a t e : P f = L k | c k | 2 d E k ρ ( E k ) | c k | 2 , w h e r e

w e d e fi n e d t h e d e n s it y o f s t a t e s ρ ( E k ) , s u c h t h a t ρ ( E k ) d E k is t h e n u m b e r o f s t a t e s w it h e n e r g y b e t w e e n E k a n d

E k + d E k . W e c a n t h e n r e w r it e t h e p r o b a b ilit y a s

P i f = 4 1 d E ρ ( E ) s in U s in g t h e lim it o f t h e s in c f u n c t io n , w e fi n d

2 ( E E i ) t | V k i | 2

( )

2 ( E E i ) 2

1 | k i |

π t V 2

i

P i f = 4 d E ρ ( E ) δ ( E E i ) 2 ( E E ) 2

| | | |

S in c e a ll t h e s t a t e s a r e in a n e ig h b o r h o o d o f t h e e n e r g y , w e e x p e c t V k i 2 V ¯ k i 2 o v e r t h e r a n g e o f e n e r g y o f in t e r e s t . T h u s b y e v a lu a t in g t h e in t e g r a l ( w it h t h e d e lt a f u n c t io n ) w e o b t a in t h e t r a n s it io n p r o b a b ilit y :

P i f = 2 | V k i | 2 π ( E k ) | E k E i

k

S im ila r ly , w e c a n c a lc u la t e t h e t r a n s it io n r a t e t o a c o n t in u u m o f s t a t e s . F r o m t h e e x p r e s s io n f o r a s in g le s t a t e , W i k = 2 π | V k i | 2 δ ( E k E i ) , w e in t e g r a t e o v e r a ll fi n a l e n e r g ie s , W i f = W i k ρ ( E k ) d E k , w h e r e f is t h e c o n t in u u m o f s t a t e s k s u c h t h a t E k E i . T h e n w e o b t a in t h e t r a n s it io n r a t e :

W = | V

2 π

l

k i k E E

| ρ ( E )

2

|

k i

T h is is F e r m i’s G o ld e n R u le .

V i r tu a l T r a n s i ti o n s

If t h e m a t r ix e le m e n t o f t h e in t e r a c t io n c o n n e c t in g t w o g iv e n s t a t e is z e r o , w e h a v e s e e n f r o m t h e e x p r e s s io n a b o v e t h a t n o t r a n s it io n is p o s s ib le , t o r s t o r d e r .

k

Σ V V

H o w e v e r , c o n s id e r c ( 2 ) ( t ) . T h is is g iv e n b y

c ( 2 ) ( t ) =

Σ V k h

V h i

t

d t

t

d t e i ω k h t e i ω h i t = i

t k h h i

d t ( e i ω k i t e i ω k h t )

k

h 0 0

h ω k i 0

s a m ` e a ˛ s ¸ b x e f o r e ` ˛ ¸ 0 x

If E h = /

E k , E i , t h e s e c o n d t e r m o s c illa t e s r a p id ly a n d g o e s t o z e r o . F in a lly w e h a v e :

2

2 π Σ V V

V +

l ω k i

W i k =

k i

k h h i

δ ( E k E i )

o r f o r a c o n t in u u m

V +

W i f =

l

k i

2 π

h

2

k h h i

ρ ( E k ) | E k E

Σ V V

i

ω k i

h

N o t ic e t h a t e v e n if V i k = 0 , w e c a n s t ill h a v e a t r a n s it io n t o k , v ia v i r t u a l t r a n s it io n s t o in t e r m e d ia t e s t a t e s , w h ic h a r e c o n n e c t e d t o t h e t w o r e le v a n t le v e ls .

MIT OpenCourseWare http://ocw.mit.edu

22.51 Quantum Theory of Radiation Interactions

Fall 201 2

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .