Boron Neutron Capture Therapy (BNCT) History

Pre-clinical Research Clinical Trials

Glioblastoma multiforme

~ 7000 new cases/yr in the US.

Standard treatment: Surgery followed by radiation therapy.

Median survival is 10 to 12 months.

Glioblastoma multiforme

Boron Neutron Capture Therapy

Glioblastoma: the invasive nature makes treatment difficult.

BNCT has the potential to selectively target these infiltrating tumor cells.

Th e BNC T Reaction

2.33 M e V o f k i ne ti c e n e r gy i s r e le ase d pe r ne utr o n c a ptur e : initial LET 200-300 k e V/ µ m

Li -7 r e coil i o n

5 µ

the r m a l ne utr o n B-10 (<0.1 e V) 8 µ

0.477 MeV G am m a (94 % )

Alpha par t i c le The r m a l c r o ss-se c t i o n = 3837 bar ns (t hat’s ver y bi g…)

Boron Neutron Capture Therapy

1. Selectively deliver 10 B to the tumor.

2. Irradiate the tumor region with low energy neutrons (n th ).

3. The short range of the 10 B(n, ) 7 Li reaction products

restricts most of the dose to the boron-loaded cells.

n th

h

n th n th

n t

BNCT Pre-History

1932: Chadwick discovers the neutron

1935: Taylor and Goldhaber describe the 10 B(n, ) 7 Li reaction

1936: Locher proposes BNCT as a cancer therapy

1951: Brookhaven Graphite Research Reactor 1951: W. Sweet, Chief of Neurosurgery at the MGH

initiates BNCT clinical trial

Brookhaven National Laboratory

BGRR

(1951-1968)

HFBR

(1968-1999)

BMRR

(1959-2000)

BNCT Clinical Trial: ~1953

BGRR Clinical Trial: 1951-1959

BNCT Clinical Trial: 1959-1961

Brookhaven Medical Research Reactor

Beam shutter

BMRR schematic

Failure of the First BNCT Trials

Poor penetration of thermal neutrons in tissue.

Boron levels in blood higher than those in tumor.

Viable tumor was found at depth following doses that exceeded the tolerance of normal surface tissues.

BNL and MIT clinical trials were stopped in 1961.

Improved boron delivery agents

HO

B C OOH

HO

NH 2

L- B P A

( p - b o r o n o - L- ph en y l al a n i n e)

2 N a +

2 -

SH

= B

= B H

BSH

(N a 2 B 12 H 11 SH )

Improvements in neutron beams

Thermal

< 0.4 eV

Epithermal

0.4 eV-10 keV

Improved penetration

Surface sparing

BNCT dose components

Boron dose - from products of 10 B(n, ) 7 Li reaction

dose - from beam contamination and neutron capture reaction in hydrogen: 1 H(n, ) 2 H

Nitrogen dose - f rom products of 14 N(n,p) 14 C reaction

Fast neutron dose from recoil nuclei (mostly protons)

Thermal Neutron Cross Sections

Nuclide

C ross section (barns)

10 B

3837

11 B

0.005

12 C

0.0035

1 H

0.33

14 N

1.70

35 Cl

43.6

23 Na

0.534

157 Gd

254,000

153 Gd

0.02

Photon-Equivalent Doses

IAEA Workshop (6/99) recommends that BNCT doses be expressed as a weighted dose D w , with the unit Gy, using the following convention:

D w = w b .D b + w g .D g + w n .D n + w p .D p

Currently:

weighting factors termed RBE or CBE factors; BNCT doses expressed in Gy-Eq units.

Beam components: depth-dose profile

10

1

0.1

0.01

0

2

4

6

8

1 0

1 2

Dept h ( c m)

total d ose

Dose rate (cGy/min)

boron capture (13 µg 10 B/g)

gamma

fast neutrons

nitrogen capture

BMRR epithermal beam, 3 MW reactor power

The boron delivery agent

HO

B

C OOH

HO

NH 2

L- B P A

( p -b o r o n o- L- ph e n y l a l a n i n e )

BPA concentrates in tumor to levels 3.5 - 4 times higher than blood or brain.

18 F PET study: adapted from Imahori et al .

JNM, 39, 325, 1998.

Rat 9L gliosarcoma

BPA biodistribution

Coderre et al., Radiat . Res., 129, 290, 1992

B NCT

Selective tumor ablation

Rat 9L gliosarcoma: 1 year post-BNCT MR images

Horseradish peroxidase perfusion Normal brain T umor scar

500 µm

Coderre et al., Int. J. Radiat. O ncol. Biol. Phys., 28, 1067, 1994.

Dose response: ED 50 endpoint

100

80

60

40

20

0

0

5

10

Dose (Gy)

15

20

Tongue fields exhibiting ulceration (%)

x rays

thermal neutrons

thermal neutrons

+ BPA

Compare isoeffective doses (ED 50 )

Coderre et al., Radiat.Res., 152, 113, 1999

BNCT radiobiology

Tissues studied: Weighting Factors U sed

in Clinical Trial

tumor 3.8

brain 1.3

spinal cord 1.3

skin 2.5

oral mucosa 2.5

10 B biological effectiveness factors range from 1.3 to over 5.

An RBE of 3.2 is use d for the high-LET beam components in all tissues.

Dog brain irradiations

Isodose contours

Dose volume histograms

30

25

20

15

10

5

0

0

5

1 0

15

20

2 5

Effective Dose (Gy-Eq)

Fr action of Vol u me ( % )

Coderre et al., J. Ne uro-Oncol., 48, 27, 2000.

Dog brain irradiations

Asymptomatic MRI changes Massive edema at 5 mos.

6 mos. post- BNCT

Coderre et al., J. Ne uro-Oncol., 48, 27, 2000.

Dog brain irradiations

1400

1200

fa st n eutro ns nitrog en ga mma bo ro n

1000

800

600

400

200

0

cGy

Dog 374 6:

No change s i n 3 y e ars

c G y- E q

c Gy c G y- E q

Dog 16 55:

Lethal nec r osis in 5 months

Average Brain Dose (cGy or cGy-Eq)

Average whole brain dose, single- field irradiation.

1 Gy = 1 jou l e/k g

2 Gy = conventional daily fraction for tumors (x 30d).

10 Gy whole body (brain) used in bone marrow transplant.

The BNCT procedure

30

BNCT

25

20

15

10

5

inf u s i on

250 mg BPA/ kg (n= 11)

0

0

1

2

3

4

5

6

Ti me (hours)

10 B concentration in blood (µg/g)

Surgery 3-4 weeks prior to BNCT.

BNCT is given in a single session

lasting less than 1 hr.

2-hr BPA infusion

BNCT starts ~ 45 min

after end of infusion

Coderre, et al., J. Ne uro-Oncol., 33, 141, 1997.

Monte Carlo-based treatment planning

Tumor

Target volume (tumor + 2 cm)

Brain

One field versus two fields

Peak dose, hemisphere dose, whole brain average dose

MITR-II showing current and new epithermal beam locations

Brain Doses

18

16

14

12

10

8

n=1 n =10 n =4 n=11 n= 17 n=6

6

1

2

3

4 a

4 b

5

Protocol

Reference Dose (Gy-Eq)

BNL BNCT clinical trial.

Reference (peak) doses in brain (maximum dose to a 1 cm 3 volume).

Doses escalated in 20% increments.

Chanana, et al., Ne urosurg., 44, 1182, 1999.

Brain dose

10

8

6

4

2

0

1

2

3

4 a

4b

5

Protocol

BNL BNCT clinical trial:

Dose (Gy-Eq)

Whole-brain average doses.

CNS side effects observed in 2 pts in Protocol 4b and all pts in Protocol 5.

Brain: Dose Volume Histograms

Dos e -Volume His t ogra m for the Norma l Brain

45

40

1- fi el d

35

30

25

2- fi eld

dogs, MTD

20

3- field

15

10

5

0

0

5

10

15

20

Effective Do se (Gy-Eq )

Fr ac tion of Volume (% )

Escalation of the dose in humans.

Comparison to the maximum tolerated dose in dogs.

Normal Brain Tolerance

A

100

80

% B r a i n V o l u m e

60 2 fi el ds

40 3 fields

20

1 fi el d

0

0 2 4 6 8 10 12 14 16

Do se ( G y( W) )

Normal Brain Tolerance

B

100

80

BNL P a ti ents w i th Somnolence

% B r a i n V o l u m e

60

40 2 f i el d s

20

0

0 2 4 6 8 10 12 14 16

Do se ( G y( W) )

Normal Brain Tolerance

C

100

2- fields

80

% B r a i n V o l u m e

60

40

20

0

0 2 4 6 8 1 0 1 2 1 4

Do se (Gy(W))

Normal Brain Tolerance

18

BNL

BNL w i th somnolenc e

16 MI T

MI T w i th s o m nol enc e

Peak Dose (Gy(W))

14

12

10

8

6

1 2 3 4 5 6 7 8 9

Whole-Br ain Aver age Dose (Gy ( W))

Normal Brain Tolerance

100

somnolence probability (% )

80

60

40

20 A v erage B r ain D o se

P e ak Brain Dose

.... .... 95% confidence

0

0 5 10 15 20 25

Dose (G y ( w ) )

Patient survival data

90

80

70

60

50

40

30

20

X X X

X

X

X

10

X

X

X

X

X

X X X X X

X X X X

X

X X X

X X X X

X

X X X X

X

X X

X

0

1

2

3

4a

4b

5

BNCT Protocol number

= alive

Survival Post-Diagnosis (months)

= ali v e with

recurrence

X = deceased

1 - 4 a = single field 4b = two fields 5 = three fields

Approximate median survival with standard therapy

(Curran, JNCI, 85, 704, 1993)

1 2 3 4a 4b 5

Status as of 5/03

BNL BNCT Data - All Patien ts

1.0

0.8

0.6

0.4

0.2

0.0

0

2 0

4 0

6 0

8 0

1 0 0

Time post-diagnosis (m onths)

Pr obabil i ty of S u r v ival

Patient survival data

Clinical Trial Summary

Escalation of neutron exposure may have reached CNS tolerance limits

The BPA-F dose has only been marginally escalated so far.

No tumor dose-response has been observed.

Tumor Doses

80

70

60

50

40

30

20

10

n = 1 n = 1 0 n = 4 n=1 1 n= 17 n= 6

0

1

2

3

4 a

4 b

5

Protocol

Minimum dose to the contrast- enhancing tumor volume.

Dose (Gy-Eq)

Calculated Gy-Eq d oses are very high: 40, 50, 60 Gy-Eq i n a single-fraction.

Tumor recurrence has been local in the majority of cases.

Tumor necrosis has been documented histologically.

Tumor: Questions

Does surgery affect BPA up take in tumor?

Do all tumor cells take up boron?

Do infiltrating tumor cells accumulate boron as well as the main tumor mass?

Dose Escalation in BNCT

Increase boron concentration

Increase neutron exposure

BPA pharmacokinetics

0.40

GB M: 5 0 ppm BPA

0.35

0.30

0.25

0.20

9L: 50 pp m BPA

0.15

0.10

9L: 2 5 pp m BPA

0.05

0.00

0

5 0

1 00

150

2 00

250

3 00

Incubat i on Time (min)

Intr acellular boron ( µ g 10 B/ 10 6 c e lls )

Cells in culture take hours to fully load with BPA

Wittig et al., Radiat. Res. 153, 173, 2000

BPA Dose Escalation

12 0

10 0

80

tumor

60

40

blood

20

br ain

(3 . 5 )

( 3 . 7)

(3. 1 )

( 3. 7)

0

0

1

2

3

4

5

6

7

Hours of continuous infusion

Rat 9L gliosarcom a

10 B concentr ation (µg/g)

Infusion rate constant: 250 m g BPA/kg/hr

Vary infusion time

Sample tumor, blood 1 hr post-infusion

Joel et al., J. Neuro-On col., 41, 213, 1999.

Improve BPA delivery to tumor

3

2

1

0

0

5

10

15

20

25

30

Time of infusion (hrs)

Rat 9L gliosarcoma

[ 10 B] MTM / [ 10 B] cl ust e r s

Infiltrating tumor cells take hours to reach the same BPA level as the main tumor mass.

Ion microscop y at Cornell Univ.; D. Smith G . Morrison.

Smith et al., Cancer Res., 22, 8179, 2001

Clinical trial in Studsvik

6- hr BPA

Infusion: 900 mg/kg

WB ave dose

3-6 Gy-Eq

JNO, 62, 135, 2003

BNCT Patient Survival

Studsvik: 6-hour BPA

infusion

1

0. 9

0. 8

0. 7

0. 6

H a r v ar d- M I T BN L

St u d s v ik

Probabilit y of Surv iv al

0. 5

JNO, 62, 135,

2003

0. 4

0. 3

0. 2

0. 1

0

0 5 10 15 20 25 30

T i m e af t e r D i agnos is (M ont hs )

Currently…

BNCT clinical trial for GBM in Sweden evaluating 6-hour BPA infusions.

MIT clinical trials now open:

Two BNCT fractions on consecutive days

GBM or melanoma metastatic to the brain

Cutaneous m elanoma.

Other BNCT clinical trials underway in Finland, Japan, The Netherlands, Czech Republic.

Clinical Trials: New Directions

Other Sites

Head and Neck

Brain Metastases (multiple) Lung?

Criteria

poor local control

sensitive normal tissues limit dose current therapies not effective

Clinical Trials: New Directions

Retreatment: BNCT for recurrent GBM Combinations

BPA + another boron compound

(GB-10, BSH, CuTCPH, BOPP)

BPA + radiosensitizer Gd-texaphyrin

BPA + photons

whole brain photons radiosurgery