Boron Neutron Capture Therapy (BNCT) History
Pre-clinical Research Clinical Trials
Glioblastoma multiforme
~ 7000 new cases/yr in the US.
Standard treatment: Surgery followed by radiation therapy.
Median survival is 10 to 12 months.
Glioblastoma multiforme
Boron Neutron Capture Therapy
• Glioblastoma: the invasive nature makes treatment difficult.
• BNCT has the potential to selectively target these infiltrating tumor cells.
Th e BNC T Reaction
2.33 M e V o f k i ne ti c e n e r gy i s r e le ase d pe r ne utr o n c a ptur e : initial LET 200-300 k e V/ µ m
Li -7 r e coil i o n
5 µ
the r m a l ne utr o n B-10 (<0.1 e V) 8 µ
0.477 MeV G am m a (94 % )
Alpha par t i c le The r m a l c r o ss-se c t i o n = 3837 bar ns (t hat’s ver y bi g…)
Boron Neutron Capture Therapy
1. Selectively deliver 10 B to the tumor.
2. Irradiate the tumor region with low energy neutrons (n th ).
3. The short range of the 10 B(n, ) 7 Li reaction products
restricts most of the dose to the boron-loaded cells.
n th
h
n th n th
n t
BNCT Pre-History
1932: Chadwick discovers the neutron
1935: Taylor and Goldhaber describe the 10 B(n, ) 7 Li reaction
1936: Locher proposes BNCT as a cancer therapy
1951: Brookhaven Graphite Research Reactor 1951: W. Sweet, Chief of Neurosurgery at the MGH
initiates BNCT clinical trial
Brookhaven National Laboratory
BGRR
(1951-1968)
HFBR
(1968-1999)
BMRR
(1959-2000)
BNCT Clinical Trial: ~1953
BGRR Clinical Trial: 1951-1959
BNCT Clinical Trial: 1959-1961
Brookhaven Medical Research Reactor
Beam shutter
BMRR schematic
Failure of the First BNCT Trials
• Poor penetration of thermal neutrons in tissue.
• Boron levels in blood higher than those in tumor.
• Viable tumor was found at depth following doses that exceeded the tolerance of normal surface tissues.
• BNL and MIT clinical trials were stopped in 1961.
Improved boron delivery agents
HO
B C OOH
HO
NH 2
L- B P A
( p - b o r o n o - L- ph en y l al a n i n e)
2 N a +
2 -
SH
= B
= B H
BSH
(N a 2 B 12 H 11 SH )
Improvements in neutron beams
Thermal
< 0.4 eV
Epithermal
0.4 eV-10 keV
Improved penetration
Surface sparing
BNCT dose components
Boron dose - from products of 10 B(n, ) 7 Li reaction
dose - from beam contamination and neutron capture reaction in hydrogen: 1 H(n, ) 2 H
Nitrogen dose - f rom products of 14 N(n,p) 14 C reaction
Fast neutron dose – from recoil nuclei (mostly protons)
Thermal Neutron Cross Sections
Nuclide |
C ross section (barns) |
10 B |
3837 |
11 B |
0.005 |
12 C |
0.0035 |
1 H |
0.33 |
14 N |
1.70 |
35 Cl |
43.6 |
23 Na |
0.534 |
157 Gd |
254,000 |
153 Gd |
0.02 |
Photon-Equivalent Doses
IAEA Workshop (6/99) recommends that BNCT doses be expressed as a weighted dose D w , with the unit Gy, using the following convention:
D w = w b .D b + w g .D g + w n .D n + w p .D p
Currently:
weighting factors termed RBE or CBE factors; BNCT doses expressed in Gy-Eq units.
Beam components: depth-dose profile
10
1
0.1
0.01
0
2
4
6
8
1 0
1 2
Dept h ( c m)
total d ose
Dose rate (cGy/min)
boron capture (13 µg 10 B/g)
gamma
fast neutrons
nitrogen capture
BMRR epithermal beam, 3 MW reactor power
The boron delivery agent
HO
B
C OOH
HO
NH 2
L- B P A
( p -b o r o n o- L- ph e n y l a l a n i n e )
BPA concentrates in tumor to levels 3.5 - 4 times higher than blood or brain.
18 F PET study: adapted from Imahori et al .
JNM, 39, 325, 1998.
Rat 9L gliosarcoma
BPA biodistribution
Coderre et al., Radiat . Res., 129, 290, 1992
B NCT
Selective tumor ablation
Rat 9L gliosarcoma: 1 year post-BNCT MR images
Horseradish peroxidase perfusion Normal brain T umor scar
500 µm
Coderre et al., Int. J. Radiat. O ncol. Biol. Phys., 28, 1067, 1994.
Dose response: ED 50 endpoint
100
80
60
40
20
0
0
5
10
Dose (Gy)
15
20
Tongue fields exhibiting ulceration (%)
x rays
thermal neutrons
thermal neutrons
+ BPA
• Compare isoeffective doses (ED 50 )
Coderre et al., Radiat.Res., 152, 113, 1999
BNCT radiobiology
Tissues studied: Weighting Factors U sed
in Clinical Trial
10 B biological effectiveness factors range from 1.3 to over 5.
An RBE of 3.2 is use d for the high-LET beam components in all tissues.
Dog brain irradiations
Isodose contours
Dose volume histograms
30
25
20
15
10
5
0
0
5
1 0
15
20
2 5
Effective Dose (Gy-Eq)
Fr action of Vol u me ( % )
Coderre et al., J. Ne uro-Oncol., 48, 27, 2000.
Dog brain irradiations
Asymptomatic MRI changes Massive edema at 5 mos.
6 mos. post- BNCT
Coderre et al., J. Ne uro-Oncol., 48, 27, 2000.
Dog brain irradiations
1400
1200
fa st n eutro ns nitrog en ga mma bo ro n
1000
800
600
400
200
0
cGy
Dog 374 6:
No change s i n 3 y e ars
c G y- E q
c Gy c G y- E q
Dog 16 55:
Lethal nec r osis in 5 months
Average Brain Dose (cGy or cGy-Eq)
• Average whole brain dose, single- field irradiation.
• 1 Gy = 1 jou l e/k g
• 2 Gy = conventional daily fraction for tumors (x 30d).
• 10 Gy whole body (brain) used in bone marrow transplant.
The BNCT procedure
30
BNCT
25
20
15
10
5
inf u s i on
250 mg BPA/ kg (n= 11)
0
0
1
2
3
4
5
6
Ti me (hours)
10 B concentration in blood (µg/g)
Surgery 3-4 weeks prior to BNCT.
BNCT is given in a single session
lasting less than 1 hr.
• 2-hr BPA infusion
• BNCT starts ~ 45 min
after end of infusion
Coderre, et al., J. Ne uro-Oncol., 33, 141, 1997.
Monte Carlo-based treatment planning
Tumor
Target volume (tumor + 2 cm)
Brain
• One field versus two fields
• Peak dose, hemisphere dose, whole brain average dose
MITR-II showing current and new epithermal beam locations
Brain Doses
18
16
14
12
10
8
n=1 n =10 n =4 n=11 n= 17 n=6
6
1
2
3
4 a
4 b
5
Protocol
Reference Dose (Gy-Eq)
BNL BNCT clinical trial.
Reference (peak) doses in brain (maximum dose to a 1 cm 3 volume).
Doses escalated in 20% increments.
Chanana, et al., Ne urosurg., 44, 1182, 1999.
Brain dose
10
8
6
4
2
0
1
2
3
4 a
4b
5
Protocol
BNL BNCT clinical trial:
Dose (Gy-Eq)
Whole-brain average doses.
CNS side effects observed in 2 pts in Protocol 4b and all pts in Protocol 5.
Brain: Dose Volume Histograms
Dos e -Volume His t ogra m for the Norma l Brain
45
40
1- fi el d
35
30
25
2- fi eld
dogs, MTD
20
3- field
15
10
5
0
0
5
10
15
20
Effective Do se (Gy-Eq )
Fr ac tion of Volume (% )
• Escalation of the dose in humans.
• Comparison to the maximum tolerated dose in dogs.
Normal Brain Tolerance
A
100
80
% B r a i n V o l u m e
60 2 fi el ds
40 3 fields
20
1 fi el d
0
0 2 4 6 8 10 12 14 16
Do se ( G y( W) )
Normal Brain Tolerance
B
100
80
BNL P a ti ents w i th Somnolence
% B r a i n V o l u m e
60
40 2 f i el d s
20
0
0 2 4 6 8 10 12 14 16
Do se ( G y( W) )
Normal Brain Tolerance
C
100
2- fields
80
% B r a i n V o l u m e
60
40
20
0
0 2 4 6 8 1 0 1 2 1 4
Do se (Gy(W))
Normal Brain Tolerance
18
BNL
BNL w i th somnolenc e
16 MI T
MI T w i th s o m nol enc e
Peak Dose (Gy(W))
14
12
10
8
6
1 2 3 4 5 6 7 8 9
Whole-Br ain Aver age Dose (Gy ( W))
Normal Brain Tolerance
100
somnolence probability (% )
80
60
40
20 A v erage B r ain D o se
P e ak Brain Dose
.... .... 95% confidence
0
0 5 10 15 20 25
Dose (G y ( w ) )
Patient survival data
90
80
70
60
50
40
30
20
X X X
X
X
X
10
X
X
X
X
X
X X X X X
X X X X
X
X X X
X X X X
X
X X X X
X
X X
X
0
1
2
3
4a
4b
5
BNCT Protocol number
= alive
Survival Post-Diagnosis (months)
= ali v e with
recurrence
X = deceased
1 - 4 a = single field 4b = two fields 5 = three fields
Approximate median survival with standard therapy
(Curran, JNCI, 85, 704, 1993)
1 2 3 4a 4b 5
Status as of 5/03
BNL BNCT Data - All Patien ts
1.0
0.8
0.6
0.4
0.2
0.0
0
2 0
4 0
6 0
8 0
1 0 0
Time post-diagnosis (m onths)
Pr obabil i ty of S u r v ival
Patient survival data
Clinical Trial Summary
• Escalation of neutron exposure may have reached CNS tolerance limits
• The BPA-F dose has only been marginally escalated so far.
• No tumor dose-response has been observed.
Tumor Doses
80
70
60
50
40
30
20
10
n = 1 n = 1 0 n = 4 n=1 1 n= 17 n= 6
0
1
2
3
4 a
4 b
5
Protocol
Minimum dose to the contrast- enhancing tumor volume.
Dose (Gy-Eq)
• Calculated Gy-Eq d oses are very high: 40, 50, 60 Gy-Eq i n a single-fraction.
• Tumor recurrence has been local in the majority of cases.
• Tumor necrosis has been documented histologically.
Tumor: Questions
• Does surgery affect BPA up take in tumor?
• Do all tumor cells take up boron?
• Do infiltrating tumor cells accumulate boron as well as the main tumor mass?
Dose Escalation in BNCT
• Increase boron concentration
• Increase neutron exposure
BPA pharmacokinetics
0.40
GB M: 5 0 ppm BPA
0.35
0.30
0.25
0.20
9L: 50 pp m BPA
0.15
0.10
9L: 2 5 pp m BPA
0.05
0.00
0
5 0
1 00
150
2 00
250
3 00
Incubat i on Time (min)
Intr acellular boron ( µ g 10 B/ 10 6 c e lls )
• Cells in culture take hours to fully load with BPA
Wittig et al., Radiat. Res. 153, 173, 2000
BPA Dose Escalation
12 0
10 0
80
tumor
60
40
blood
20
br ain
(3 . 5 )
( 3 . 7)
(3. 1 )
( 3. 7)
0
0
1
2
3
4
5
6
7
Hours of continuous infusion
• Rat 9L gliosarcom a
10 B concentr ation (µg/g)
• Infusion rate constant: 250 m g BPA/kg/hr
• Vary infusion time
• Sample tumor, blood 1 hr post-infusion
Joel et al., J. Neuro-On col., 41, 213, 1999.
Improve BPA delivery to tumor
3
2
1
0
0
5
10
15
20
25
30
Time of infusion (hrs)
• Rat 9L gliosarcoma
[ 10 B] MTM / [ 10 B] cl ust e r s
• Infiltrating tumor cells take hours to reach the same BPA level as the main tumor mass.
Ion microscop y at Cornell Univ.; D. Smith G . Morrison.
Smith et al., Cancer Res., 22, 8179, 2001
Clinical trial in Studsvik
6- hr BPA
Infusion: 900 mg/kg
WB ave dose
3-6 Gy-Eq
JNO, 62, 135, 2003
BNCT Patient Survival
Studsvik: 6-hour BPA
infusion
1
0. 9
0. 8
0. 7
0. 6
H a r v ar d- M I T BN L
St u d s v ik
Probabilit y of Surv iv al
0. 5
JNO, 62, 135,
2003
0. 4
0. 3
0. 2
0. 1
0
0 5 10 15 20 25 30
T i m e af t e r D i agnos is (M ont hs )
Currently…
• BNCT clinical trial for GBM in Sweden evaluating 6-hour BPA infusions.
• MIT clinical trials now open:
• Two BNCT fractions on consecutive days
• GBM or melanoma metastatic to the brain
• Cutaneous m elanoma.
• Other BNCT clinical trials underway in Finland, Japan, The Netherlands, Czech Republic.
Clinical Trials: New Directions
Other Sites
Head and Neck
Brain Metastases (multiple) Lung?
Criteria
poor local control
sensitive normal tissues limit dose current therapies not effective
Clinical Trials: New Directions
Retreatment: BNCT for recurrent GBM Combinations
BPA + another boron compound
(GB-10, BSH, CuTCPH, BOPP)
BPA + radiosensitizer Gd-texaphyrin
BPA + photons
whole brain photons radiosurgery