22.033

Biofue ls Presen tation

Alex, Lizz y, Ogie, Matt, and Kat hryn October 3, 2011

1

Overview

Our G oal

House of Q uali ty

Comp ariso n of Biomass Sources

Possibl e Uses & Processes

Comp ariso n of Inputs

Comp ariso n of O utputs

Conclusi on

2

Our Goa l

As a grou p, we inten d t o de sign a bio fuels plan t which:

1. Maximi zes our fuel outpu t

2. Co up les with hydr og en pro du ction

3. Uses t he t he resources (electricit y , heat, etc.) from the nuclear plan t.

3

H ouse of Quality

Cu stom er Requi rem ents

Ca rbon emissi ons

Fue l De mand

Fu el Output (Quantity)

Co mpetition wi th Foo d Su ppl ie rs

Co st of F uel Produced

Quali ty of F uel Produ ce d (Energy Den sity)

HoQ template courtesy of QFD Online. Used with permission.

4

Biomass feedstock compa rison

Cost

Energy den sity

A gricul tu re y ield

Com pet itio n w ith fo od sou rce

Sw itc h grass

$60/t on

17 MJ/kg

1 1.5 t on /acre

no

Sorghu m

$40/ton

16.9 MJ /kg

20 to n/acre

ye s

Energy cane

$34/ton

12.9 MJ /kg

30 to n/acre

no

Energy cane

$34/ton

12.9 MJ /kg

17 to n/acre

ye s

Corn

$40- 50/to n

13.4 MJ /kg

3.4 to n/acre

ye s

A lgae

58,700L/ha

no

5

Biomass feedstock compa rison

Biomass

Algae T ransesteri fication

Bio fuels

Microb e Electrolysi s

H gas

Gasification

Hydro lysis

Syngas

Ethanol

Fermentation (Bio)

Catalytic Conve rsion (Thermo)

Ethan ol,

F -T biofuel s

Hydro gen

6

Algae Tr ansesterification

Pros:

Requ ires low t em pe ratu res be twee n 20 - 30C

Prod uced with ou t th e use of

hig h -value ara ble la nd

Con s:

Does no t u tili ze core he at or hydrog en inp uts

Expe nsive to h arvest

*** http:/ /ww w .oil ga e.com/alg ae /oil /biod/t ra/t ra.htm l

*** Y usuf Ch isti (2007) Bi odi esel fr om Microal g 7 ae . Bi otechno lo gy Ad vance s 25:294 - 306

Electrofuel s

Uses power from the core to drive mic rob ial pro cess es that pro duce hydrog en gas.

1. Mic rob ial Elec trolys is Cell (MEC)

uses ene rgy to en ha nce t he microbia l proce ssi ng of org anic substrates (e.g. cellulose, acetic acid) in a "bio battery" to pro duce hydrog en gas and oxygen.

2. Microbia l Electrosy nthe sis

Eff iciency d epe nds on pH, sy stem tempera ture, and choice of mic rob e

8

Biochem ical Ethanol Productio n

Dilute acid p re - treatment (glucos e etc)

Simultaneous Sacchar ification and Fermentat ion (SSF) (37 ° C, 7 days)

Ethanol recov ery by dis tillation

W aste W ater T reatment (WWT ) (methane) 9

Ethanol Inputs and O utputs

Inpu ts

Bioma ss: 65 .6 kg/s Lo w P Stea m: 7.1 kg /s High P Stea m: 23 .0 kg /s

$2 /gall on

( Bransb y , Cell ulos i c biofuel

tec hnol ogi es )

© Society of Chemical Industry and John Wiley & Sons, Ltd. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .

Therm ochem ical Biofuel Productio n

1. Gasification (Syngas produ ction)

2. Syngas conversion (F - T liqui d produ ction)

3. F -T li quid refining (gasoline, diesel blend)

© Range Fuels, Inc. All rights reserved. This content is exclud ed from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .

F- T Process Overvi ew

Biomas s:

41. 4 k g/s

O2 Stea m: 2 .6 kg /s 240 ° C

Gasifie r

H2S, CO2

F - T

Refini ng

T ar Crack ing

Gaso lin e Ble nd :

2.5 k g/s

Dies el Blen d:

3.8 kg /s

H2:

0.1 k g/s

25 -

40 ° C

Sync ru de

F - T

Synthe sis

Rec yc lin g o f Unc on ve rte d Syng as

Acid Gas Remo val

Cool ing , Filt erin g

Di agram and num bers ad a 1 p 2 ted from Kreutz , Fis her - T ropsc h Fuels from Coal And Bi omas s , 2008

Hydro gen Use in F - T Refinin g

Courtesy of Thomas G. Kreutz. Used with permission.

$1/ga llon

(Bransb y , Cel l ul os i c bi ofuel tec hnol ogi es )

Comp ariso n of processe s

T emp erature

of reac tio n

Hy drog en

inp ut

Steam inp ut

Biom ass

inp ut

Biof uel

O ut pu t rate

Elec tricit y

usag e

Capit al cost

Electro fu el

2 5 - 1 00 C

0

0

7.2 kg

cellulose/1 kg H2

1.23 m 3 H2/m 3

reac to r day at op tim al v olt age

~2.2 kW

h/m ^3 - reac to r day

$ 75 0 ,0 00

Bioco nv ersion

190C

0.41 kg/sec

30 kg/sec

(100C and 190C)

65kg/sec (s

w itch grass)

13.2 kg/sec

(et han ol)

$346million

Th ermochem ical

bio fu el

236

0.1 kg/sec

(25C, 4bar)

2.6 kg/sec,(236

C)

41.4 kg/sec

(sw itch grass)

6.3 kg/sec

(g asoline blen d)

32MW

$541 million

Phot osy nt he t ic algae

20- 30 C

0

0

carbon

dio xide, nit rogen , sulf ur

226.1 gal/ day

55kW

$821,000-

$14million

14

Summar y of Products

15

E nergy Density of Biofuel s

Ener gy De nsity of differe nt po ssi ble pro du cts from F - T liquid s Bio - diesel fuel - high est ene rgy to volume ratio

16

B iofuel Carb on Emissions

Bio - diesel Emi ss ions vs. Con ventional Diesel Emi ss ions for :

100 % bio - diesel fuel

20% bio - diesel fuel and 80% conventional diesel fuel

17

Bio- Fuel Chall enge s

Low freezing point at 100 % bio - diesel fuel

Gen era lly mix ed to dispel these qua lities

Do es no t meet curre nt EN59 0 v eh icle q ua lity st an da rd

Can be used in s tanda rd cars up to 20% bio - diesel fuel

Rise in Nitrogen Oxide emis sions, respon sible for sm og

Decrea se in bio - diversity in energ y crop har vest ing

DARPA is inter ested in alterna tiv e jet fuels pro duction

Have grants for $5M that

can help off set capital c ost

18

Conclu sion

Switc hgrass

Gasific ation - based F-T process

Steam requiremen t: (2.6kg/sec , 240C)

Hydrogen requirement: 0.1kg/sec (25C, 4bar)

End products: biodi esel and gasoli ne

19

MIT OpenCourseWare http://ocw.mit.edu

22.033 / 22.33 Nuclear Systems Design Project

Fa ll 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .