Process HEAT PROGR ESS REPOR T
Laur en Ay er s Sarah Lade rman Adit i Ver ma Anonym ous stude nt
• System Diag ram
• Heat Exc ha ng ers
• Com pre ssors
• Heat Tran sport
• Hea t Sto rag e
• Requ ired Inp uts
Outline
System Diag ram
Printed Circ uit Heat Exc hangers (PCHE s)
Fi g . 1 (pg . 2 1 8 ) f ro m D. S o u t h al l , an d S . J. De w so n , I n n o v at i v e C o mp act H e at E x ch an g e rs. Published in ICAPP 2010, San Diego, CA, June 13-17, 2010. © Ame rican Nuclear Society and the authors. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .
T hig h = 800 ° C P hig h =20 MPa
PCHEs chosen for t heir :
• Hig h opera ting temperatures
• Small volum es
• High ef fect iveness
Sys tem Diag ram - Ini tia l Design
PC HE lo ca tio n s
Process Hea t System
• Eli min ate d a PC HE, F -He he ate r an d
• iso la ted a PC HE
• red uce d the nu mbe r of de pe nd en t vari ab le s in t he Proce ss he at lo op
PCH E lo catio ns
Fluid {5MPa; [200 C, 70 0C ]} |
Hea t Ca pa city |
V isco sit y |
Boili ng T emp . |
Spe cial Issu es |
Ca rb on Dioxide (CO 2 ) |
[1. 0795 , 1.2378] |
[1. 35*10 - 4, 3.678 *10 - 5] |
263.94 C |
|
W ater/S tea m (H 2 O ) |
[4. 4761 , 2.3515] |
[2. 337*1 0 - 5, 4.064*10 - 5] |
14.28 C |
W ant to avoid two - phas e flow |
He lium (H e) |
[5. 1889 , 5.1906] |
[2. 74*10 - 5, 4.533*10 - 5] |
- 264 C |
co stly due to He sh or tage |
C hoice of Heat Exchanger Material
• T ens il e stre ngth
Con side ratio ns incl ud ed :
• The rmal co ndu ct ivity
• The rmal expans io n
• Corros io n res is tan ce
• Eas e o f manu fac turi ng pro ce ss
• Des ig n l ife of u p to 6 0 years
Allo y 61 7
nic kel -chro m ium -cob alt -m olybdenu m
Ulti mate T ens il e Stren gth at 6 50C = 62 7 MPa Coef fic ie nt of the rmal expans io n, [20 -760 ]C = 15 .1u m/m -C
The rmal co ndu ct ivity at 65 0C = 23 W/m -K
All oy 617 Stress es
Pmax = 2 0 M Pa a t core HX, T=630C Tmax =800C at h ydrogen HX , P = 3MP a
He at Ex chan gers wo uld be operatin g we ll bel ow desi gn str ess at all poi nts in system
Source: Li, Xiqing., et al. "Alloy 617 for the High Temperature Diffusion-Bonded Compact He a t E x ch an g e rs. " P u bl i sh ed i n I C A P P 2008, A n a h ei m , C A , J u n e 8 - 12, 2008 . © A m er i ca n Nuclear Society and the authors. All rights reserved. This cont ent is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .
PCH E no da l mo de l
Mo d e l a ssu mp tio n s:
• T he total mass f lo w rate is un iforml y di stribu ted amo ng the cha nn el s
• T he w al l cha nn el temp era ture is un iform at eve ry ax ia l no de
• Co ld an d ho t pl ate s ha ve the same nu mbe r of f lo w cha nn el s
Co d e d ivi d e s a sin g le ch a n n e l in to n o d e s o f e q u a l le n g th a n d itera tes to o p timi ze the
cha nn el le ng th
V . Dostal , " A Supercritical Carbon Diox ide Cy cle for Nex t Generation Nuclear Reactors" , M IT PhD thesis (2004)
35 MW I nte rmed iat e Heat Exc ha ng er
Re y no ld s nu m ber
25 00 0
ho t flui d: S -CO2 col d flui d: He
20 00 0
Rey n o lds n u mb er
15 00 0
d =5mm
10 00 0
hot
d co ld = 6 m m cou nte rflow Zigza g cha nn el s
θ=45 C
T h ot in = 6 30 ° C
T cold out =60 6 .5 ° C
m flow col d =22 kg/s (con strain ed by T cold out )
• Re y no ld s nu mbe r an d p ressu re dro ps as a f un ction of the mass f lo w rate of the ho t flui d
• Ho t flu id is i n t h e t u rb u le n t flo w
reg ime
• Co ld flui d is in t he lami na r flow reg ime
50 00
0
45 00 0
40 00 0
P r es sure d r o p ( P a)
35 00 0
30 00 0
25 00 0
20 00 0
15 00 0
10 00 0
50 00
0
0 50 10 0 15 0 20 0 25 0
CO 2 mass f low r ate ( kg/s)
C o l d F l ui d r e y no l d s n um b er Ho t fl u i d rey n o l d s n u m b e r
Pre ss ure drop
0 50 10 0 15 0 20 0 25 0
CO 2 mass f low r ate ( kg/s)
C o l d s i de pr es s u r e d r op ( P a) H o t s i de p r es s ur e d r o p ( P a )
PCH E volum e
He at tra nsfer coe fficient
35 00
30 00
W /m 2 K
25 00
20 00
15 00
10 00
50 0
0
8
7
6
V o lum e ( m 3 )
5
4
3
2
1
0
0 50 10 0 15 0 20 0 25 0
CO 2 mass f low r ate ( kg/s)
Co l d fl u i d he a t trans fe r c o eff i c i en t Ho t fl ui d he at tr an s f er c oe ff i c i e nt
PCH E v ol ume
0 50 10 0 15 0 20 0 25 0
CO 2 mass f low r ate ( kg/s)
• He at ex cha ng er vol ume de crea ses w ith an in crea se in the CO 2 mass flow rate
• Smal le st po ssib le vol ume is de sira bl e du e to hi gh costs of materi al s an d fab rica tion
• PCH Es cost up w ard s of $ 50 0,0 00 /un it an d cost is pro po rtion al to vol ume
• A straig ht cha nn el PCH E w ith a CO 2 mass flo w ra te o f 9 0 kg/s h a s a vo lu me o f 15 .36 7m 3. For t he same mass f lo w rate , a zig zag cha nn el PCH E is 54 .4% smal le r .
Future Heat Ex changer Wor k
• Optimize the he at e xc han ger s g ive n in pu ts an d o utp uts fro m bi ofu el s, co re , and hy dr og en su bg ro up s; ch oo se be twee n st ra ig ht an d z ig za g PC HE ch ann els
• Dete rmin e ou r HX ‟ s de si gn li fet ime
• Plan mai nte na nc e an d re pa irs sc he du le – on lin e ma na ge men t po ss ib le ?
• Int ro du ce an eme rg en cy he at si nk , al ter na te „r e se rv e‟ wor ki ng flu id fo r rap id co oli ng?
Source: Li, Xiqing., et al. " Alloy 617 for the High Temperature Diffusion-Bonded Compact Hea t Exchangers." Published in ICAPP 2008, Anaheim, CA, June 8-12, 2008. © American Nuclear Society and the authors. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .
Compres sors
Nee de d to kee p he liu m flo wing
Pressure rati o & th erma l e fficie ncy given by ma nu factu rer
To fin d o utl et tem pe ratu re:
n = W i de al = = h out , i de al − − h i npu t
W r e a l h out − − h i npu t
Whe re:
h = = c p ∗ ∗ T
Compres sors II
Spe cific comp ressor chose n af te r pre ssures are de term ine d
Pap er by Hee Cheo n No, Ji Hwan Kim, an d Hyeun Min Kim comp are s ma ny hig h tem pe ratu re & pre ss ure comp ressors
Pressure rat io s fro m 1. 7 – 2
Ma chine eff icien cies from 90-98 %
No et al . “A Re vie w of He li um Gas T urb in e T ech no lo gy for Hig h - temp era ture Gas -coo le d Re acto rs.” Nu cle ar En gi ne eri ng an d T ech no lo gy , V ol . 3 9, No . 1 (2 00 7).
Transport
All oy 6 17 fo r he liu m pip in g ma te ria l
Stai nle ss steel he at pip e f or wa ter tran sport
Nee d warm est po ssible at mo sphe ric tem pe ratu re
Once site i s det ermi ne d, loo k a t h ea t lo ss an d de te rmi ne pi pe th ickness
Equa tio ns fr om 2 2.0 6 n ote s, mod el in g ea ch s ec tio n as a r es is tor fr om q ' cen ter to T atmosp he ric
600
550
Area F
500
450
400
350
300
Area E
250
200
Area D
150
Area C
100
50
Area B
0
0
10
Area A
20 30
40
50
Siz e of cloud (tons of h y drocarbon equiv alent)
Safety Dis tance s
Area F: no li mits
D istance f orm point of release (meters)
Area E: no housing
Area D: De sign buil dings for a peak incid ent gauge pres sur e bet ween 1.5 & 3 psi. Roof to be independently suppor ted & win dows protect ed. N o publi c roads.
30 m i n bet ween plants
175 m fr om p ubli c roads
360 m fr om hou sing
Image by MIT OpenCourseWare.
R ef erenc e : Gas Ex plos ion H andbook, ht t p: / / w w w . gex c on. c om / ha ndb oo k / GEXH Bc h ap 1 1. ht m (af t er Klet z , 1988)
PCM: Lithium Chloride (LiCl)
Property |
V alu e |
Me ltin g Po int |
605 ° C |
Δh ° fusio n |
47 0 kJ/kg |
c_p (solid ) |
1.1 32 kJ/k g - K |
P u b li c d o m a in (W iki p e d ia )
Containment Material: All oy 20
Nickel -Chro mi um - Mo lybde nu m all oy
Resistant to chlori d e io n corrosio n
MP >13 80 ° C
k = 1 8. 15 W/m -K
© Best Stainless & Alloys. All rights reserved. This content i s excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .
Chemical Composition, %
http://www.beststainless.com/alloys/alloy-20.html
Ni |
Cr |
Mo |
Mn |
Cu |
Si |
C |
S |
P |
Cb+Ta |
Fe |
|
MIN |
32.5 |
19.0 |
2.0 |
- |
3.0 |
- |
- |
- |
- |
8.0 X C1.0 |
- |
MAX |
35.0 |
21.0 |
3.0 |
2.0 |
4.0 |
1.0 |
0.06 |
0.035 |
0.035 |
- |
Balance |
S ou r ce: htt p : / / w w w . r ol l ed al l oy s. com / products/ ni ck el - al l oy s/ al l oy - 20
Image by MIT OpenCourseWare.
Chargin g Lay out
Disc harging Layout
Storage – Heat Exchanger
Storage – Heat Exchanger
Ass umptions
Heat stored in PCM a s l ate nt he at on ly
No con vection withi n PCM
L(p cm) ~= L(slab )
t(pcm) << L(p cm)
Heliu m t em pe ratu re isoth erma l fo r an y g iven “x”
Next Steps for Storage
Dete rmin e ge om etry
Dete rmin e ma ss of PCM n ee de d
Calcula te Re, h of he liu m, Bio t n um be r
The rmal an alysis of PCM a nd cont ain me nt
Pressure dro p across HX
Cha rgi ng an d di scharg in g da ta
Required inputs
• Mass flow rate of lead bismuth during shutdow n
• Temp lead bismuth should be heat ed to using stored heat
• Time between s hutdown and heating lead bismuth
• Maximum time for heating lead b ismuth
Questions?
MIT OpenCourseWare http://ocw.mit.edu
22.033 / 22.33 Nuclear Systems Design Project
Fa ll 2011
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .