22.033 Process Heat
La ure n A yers Sara h La de rma n Adit i V erma
Anon ymous stude nt
Present ati on 1
Octobe r 5, 2 0 1 1
Outline
Sys tem La yout
Heat Exc ha ng er Design s
Heat Stora ge Opti on s
Heat T ran sport
Fut ure W ork
System Layout
Core
65 0 C
76 0 C
Hydroge n Plant
Bu rn w a ste p ro d u ct to rai se temp era ture for hy dro ge n pl an t.
Provi de re a ctor w ith ex tra he at.
Heat Storage
Plant
Biofuel
24 0 C
T ypes of Heat Exc hangers Investigated
Stan da rd shell an d t ub e
Prin te d circuit he at excha ng ers
Helical shel l a nd tu be
Th erm osyph on s
Criteria for Sel ecting a Heat Exchanger
Opera tin g tem pe ratu re an d p ressure
High he at tran sfer pe rfo rma nce
Ef fectiven ess
Fou lin g
Courtesy of MERUS GmbH. Used with permission.
Multi ple Pass Shell an d T ube with Continuous Heli cal Baf fles
Photo from Q. Wang
Courtesy of Elsevier, Inc., http://www.sciencedirect.com . Used with permission.
Ma x. ope r a ting pr essur e: ~70 MP a
Ma x. oper a ting t emper a tur e : depend en t on m a t erials
Induc ed turb ulence + high shear s tr e 6
ss =
less f ouling
Printed Circ uit Heat Exc hangers ( PCHEs)
• All - me t al HXs made of dif fusion
bond ed pla t es
• Long desi gn li f e (u p t o 6 0 y ear s)
• Compact, mas s/d uty r a tio of 0.2
Dif fus ion bon d in g of PCH E p la t es ( Hea tr ic TM )
C r os s sec tional vie w of th e s em i - ci r cul a r p ass ag es ( Hea tric TM )
t ons/MW
• High oper a ting t em per a tur es (u p t o 90 0 C) and pr ess ur e (6 0 M Pa )
• Hi gh s urf ace ar ea densi ty ( 250 0
m 2 / m 3 )
• Hyb ri d fi n and pla t e typ e PCHE , H2X , suit able f or c oup li ng g aseous and l iquid w ork ing flui ds
© Heatric. All rights reserved. This content is excluded from o ur Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .
Cur r en t o p er a t in 7 g e x p erie n c e o f H ea t ric TM PCH Es
( Gezeli u s , K., “ D esig n o f Co m p act In te rm edi ate H eat Exc h an g ers fo r Gas Co o led Fa st React o rs, ” Bach elo rs’
& M aste rs’ Thesis, M IT, J u n e 2 0 0 4 .)
Heat Exchanger Requirements
Ope rat in g T em pe rat ure s
HX c on ne ct ed to CO2 lo op : 6 50 - 900 ºC
Hyd ro ge n pl an t: 7 00 - 900 ºC
Biofu el s pl an t: 240 - 300 ºC
Heat s tor ag e: 30 0 - 500 ºC
Sta nd ard ized he at excha ng er de sign will redu ce pla nt comp lexity an d o pe rati ng an d ma int en an ce costs
Heat Exchanger Configurations
T wo HX in stead of singl e h igh te mp era ture HX to in crease de sign lif e
Conn ect pro cess he at sy stem in pa rall el or series
Remo ve he at from th e second ary cy cle be fore the po wer conversion sy stem
Need to de ci de with c or e
HX de cisions will dep en d on flo w rate s a nd tem pe ratu res pro vided by core an d n ee de d b y bi of ue ls an d hydro ge n pl an ts
Benefits of Heat S torage
Pla te au e ne rgy flu ctua tio ns du rin g da ily cycles
Providi ng lowe r te mp era ture to bio fue ls witho ut wasting he at
Heat Stora ge Options
La te nt Hea t vs. S en sible Hea t
La ten t – st or in g e ne rg y in c he mica l bo nd s
Sens ib le – us in g c ha ng e of temp er atu re of mate ria l to stor e h eat (s pec ific hea t c apa cit y)
Decide d on la ten t h ea t
Can st or e hig he r en er gy de ns ity
Prov id es he at at co ns tan t ope ra tin g temp er atu re
Use s ph as e c ha ng e ma ter ia ls
Phase Change Material De cis ion T ree
Courtesy of Elsevier, Inc., http://www.sciencedirect.com . Used with permission.
PCM Selecti on
Mu st ha ve me lti ng p oi nt in desire d op era tin g tem pe ratu re ran ge
Ide al Chara cteristics:
High la ten t hea t o f fusi on pe r u ni t ma ss
High de ns ity
High sp ec ifi c hea t
High the rma l co nd uc tiv ity
Chemi ca lly st ab le
Non - co rro siv e to the co nta inmen t mate ria l
Liquid - Solid PCMs
Para f fin s & Sal t Hy dra tes
Oper ati ng temp er atu re too lo w
Sal ts
Lar ge ran ge of ope rat ing tempe rat ure s
Is su es : co rr os io n & l ow the rma l c on du ct iv ity
Me tal s
Des ira bl e the rmo dy na mic pr op er tie s
Is su es : fre ez in g c an c au se st re ss es to co nta in men t, temp er atu re ra ng e is limi ted
Salt and Metal PC Ms
Courtesy of Elsevier, Inc., http://www.sciencedirect.com . Used with permission.
Looki ng Ahead
Cont ain me nt structure cann ot be de signe d u nti l a PCM is chosen
Mater ial co mpati bil ity co nc ern s
V olu me of ma teri al is de pe nd en t on :
Ther mod yn amic pr op er tie s of the mat er ia l
Amoun t of en er gy th at ne ed s to be s tor ed
Heat Transport Methods
The rmosypho ns
Use s gr av ity an d p ha se c ha ng es to mov e h ea t l on g di st an ce s with mi ni mal he at lo ss
High ly de pe nd en t o n l oc ati on of pl an t
Heat pip es
Can us e cap ill ar y ac tio n a nd if in c or re ct or ie nta tio n, gra vit y can as sis t
Can al so us e c en tri pe tal , e le ct ro ki ne tic , mag ne tic , an d o smo tic fo rc es
• No t as practica l for l on g di stance s an d no t a s we ll
deve lo ped technol ogi es 17
Heat Transport Decisi ons
Me tho d of cond en sate tran sport de term ine d by dista nce be twee n pla nts
Will mode l hy dro gen pl ant ex plo sio ns an d b iof uel pl an t fi re s to d ete rmin e sa fe dis tan ce s
Ma teri al an d wo rking flu id de term ine d by HX choi ce an d te mp era tu re en viron me nt
Future W ork
Fin ali ze he at exchan ge r an d h ea t storag e de signs
Mo de l sys tem on ce ini tia l outp uts/in pu ts are avai la bl e
Matl ab , EES , RELAP
Heat sink as a safet y m ea sure at hydrog en pl an t
Dete rmin e pla nt dista nces as mo re d ata be come s avail ab le
Questio ns?
MIT OpenCourseWare http://ocw.mit.edu
22.033 / 22.33 Nuclear Systems Design Project
Fa ll 2011
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .