22.033 Process Heat

La ure n A yers Sara h La de rma n Adit i V erma

Anon ymous stude nt

Present ati on 1

Octobe r 5, 2 0 1 1

Outline

Sys tem La yout

Heat Exc ha ng er Design s

Heat Stora ge Opti on s

Heat T ran sport

Fut ure W ork

System Layout

Core

65 0 C

76 0 C

Hydroge n Plant

Bu rn w a ste p ro d u ct to rai se temp era ture for hy dro ge n pl an t.

Provi de re a ctor w ith ex tra he at.

Heat Storage

Plant

Biofuel

24 0 C

T ypes of Heat Exc hangers Investigated

Stan da rd shell an d t ub e

Prin te d circuit he at excha ng ers

Helical shel l a nd tu be

Th erm osyph on s

Criteria for Sel ecting a Heat Exchanger

Opera tin g tem pe ratu re an d p ressure

High he at tran sfer pe rfo rma nce

Ef fectiven ess

Fou lin g

Courtesy of MERUS GmbH. Used with permission.

Multi ple Pass Shell an d T ube with Continuous Heli cal Baf fles

Photo from Q. Wang

Courtesy of Elsevier, Inc., http://www.sciencedirect.com . Used with permission.

Ma x. ope r a ting pr essur e: ~70 MP a

Ma x. oper a ting t emper a tur e : depend en t on m a t erials

Induc ed turb ulence + high shear s tr e 6

ss =

less f ouling

Printed Circ uit Heat Exc hangers ( PCHEs)

All - me t al HXs made of dif fusion

bond ed pla t es

Long desi gn li f e (u p t o 6 0 y ear s)

Compact, mas s/d uty r a tio of 0.2

Dif fus ion bon d in g of PCH E p la t es ( Hea tr ic TM )

C r os s sec tional vie w of th e s em i - ci r cul a r p ass ag es ( Hea tric TM )

t ons/MW

High oper a ting t em per a tur es (u p t o 90 0 C) and pr ess ur e (6 0 M Pa )

Hi gh s urf ace ar ea densi ty ( 250 0

m 2 / m 3 )

Hyb ri d fi n and pla t e typ e PCHE , H2X , suit able f or c oup li ng g aseous and l iquid w ork ing flui ds

© Heatric. All rights reserved. This content is excluded from o ur Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .

Cur r en t o p er a t in 7 g e x p erie n c e o f H ea t ric TM PCH Es

( Gezeli u s , K., D esig n o f Co m p act In te rm edi ate H eat Exc h an g ers fo r Gas Co o led Fa st React o rs, Bach elo rs’

& M aste rs’ Thesis, M IT, J u n e 2 0 0 4 .)

Heat Exchanger Requirements

Ope rat in g T em pe rat ure s

HX c on ne ct ed to CO2 lo op : 6 50 - 900 ºC

Hyd ro ge n pl an t: 7 00 - 900 ºC

Biofu el s pl an t: 240 - 300 ºC

Heat s tor ag e: 30 0 - 500 ºC

Sta nd ard ized he at excha ng er de sign will redu ce pla nt comp lexity an d o pe rati ng an d ma int en an ce costs

Heat Exchanger Configurations

T wo HX in stead of singl e h igh te mp era ture HX to in crease de sign lif e

Conn ect pro cess he at sy stem in pa rall el or series

Remo ve he at from th e second ary cy cle be fore the po wer conversion sy stem

Need to de ci de with c or e

HX de cisions will dep en d on flo w rate s a nd tem pe ratu res pro vided by core an d n ee de d b y bi of ue ls an d hydro ge n pl an ts

Benefits of Heat S torage

Pla te au e ne rgy flu ctua tio ns du rin g da ily cycles

Providi ng lowe r te mp era ture to bio fue ls witho ut wasting he at

Heat Stora ge Options

La te nt Hea t vs. S en sible Hea t

La ten t st or in g e ne rg y in c he mica l bo nd s

Sens ib le us in g c ha ng e of temp er atu re of mate ria l to stor e h eat (s pec ific hea t c apa cit y)

Decide d on la ten t h ea t

Can st or e hig he r en er gy de ns ity

Prov id es he at at co ns tan t ope ra tin g temp er atu re

Use s ph as e c ha ng e ma ter ia ls

Phase Change Material De cis ion T ree

Courtesy of Elsevier, Inc., http://www.sciencedirect.com . Used with permission.

PCM Selecti on

Mu st ha ve me lti ng p oi nt in desire d op era tin g tem pe ratu re ran ge

Ide al Chara cteristics:

High la ten t hea t o f fusi on pe r u ni t ma ss

High de ns ity

High sp ec ifi c hea t

High the rma l co nd uc tiv ity

Chemi ca lly st ab le

Non - co rro siv e to the co nta inmen t mate ria l

Liquid - Solid PCMs

Para f fin s & Sal t Hy dra tes

Oper ati ng temp er atu re too lo w

Sal ts

Lar ge ran ge of ope rat ing tempe rat ure s

Is su es : co rr os io n & l ow the rma l c on du ct iv ity

Me tal s

Des ira bl e the rmo dy na mic pr op er tie s

Is su es : fre ez in g c an c au se st re ss es to co nta in men t, temp er atu re ra ng e is limi ted

Salt and Metal PC Ms

Courtesy of Elsevier, Inc., http://www.sciencedirect.com . Used with permission.

Looki ng Ahead

Cont ain me nt structure cann ot be de signe d u nti l a PCM is chosen

Mater ial co mpati bil ity co nc ern s

V olu me of ma teri al is de pe nd en t on :

Ther mod yn amic pr op er tie s of the mat er ia l

Amoun t of en er gy th at ne ed s to be s tor ed

Heat Transport Methods

The rmosypho ns

Use s gr av ity an d p ha se c ha ng es to mov e h ea t l on g di st an ce s with mi ni mal he at lo ss

High ly de pe nd en t o n l oc ati on of pl an t

Heat pip es

Can us e cap ill ar y ac tio n a nd if in c or re ct or ie nta tio n, gra vit y can as sis t

Can al so us e c en tri pe tal , e le ct ro ki ne tic , mag ne tic , an d o smo tic fo rc es

No t as practica l for l on g di stance s an d no t a s we ll

deve lo ped technol ogi es 17

Heat Transport Decisi ons

Me tho d of cond en sate tran sport de term ine d by dista nce be twee n pla nts

Will mode l hy dro gen pl ant ex plo sio ns an d b iof uel pl an t fi re s to d ete rmin e sa fe dis tan ce s

Ma teri al an d wo rking flu id de term ine d by HX choi ce an d te mp era tu re en viron me nt

Future W ork

Fin ali ze he at exchan ge r an d h ea t storag e de signs

Mo de l sys tem on ce ini tia l outp uts/in pu ts are avai la bl e

Matl ab , EES , RELAP

Heat sink as a safet y m ea sure at hydrog en pl an t

Dete rmin e pla nt dista nces as mo re d ata be come s avail ab le

Questio ns?

MIT OpenCourseWare http://ocw.mit.edu

22.033 / 22.33 Nuclear Systems Design Project

Fa ll 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .