Cha p t e r 3
D e c i si on M a ki ng under U ncert a i n t y
In th e p revio u s l ectu re, w e c o n sid e red d ecisio n p r ob lem s i n w h ic h t h e d ecisio n m a k e r do e s no t k no w t he c o ns e q ue nc e s of hi s c ho i c e s but h e i s g i v e n t h e p ro ba bi l i t y o f e a c h co nse q ue nc e u n d e r e a c h c h o ic e. In m o st ec on om ic a p plica t ion s , s uc h a p r o b a b ilit y i s n o t g i v en . F or exa m p l e, in a g iv en g a m e , a p l a y er cares n o t on ly ab o u t w ha t h e p la ys b u t a lso a b o u t w h a t o t her p la y e r s p l a y . H en ce, th e d escrip tion o f con sequ e n ces incl u d e th e s tra t eg y p ro fi les. In tha t case, i n o rd er to fi t i n t h a t f r a m e w o r k , w e w o u l d n e e d t o giv e oth e r p l a y e rs’ m ixed strategy p r o fi les i n t he description o f t he gam e , m aking G am e T h eo retica l a na lysis m o o t. L i k e w i se in a m ark e t, th e p ri ce is form ed accord ing t o t h e c o l l ec t i v e a c t i o n s o f a l l mark e t pa rt i c i p a n t s , a nd he nc e t he pri c e d i s t r i b ut i o n i s n o t gi v e n.
I n al l t he s e probl e m s , t he de ci s i on m a k e rs ho l d s u b j e c t i v e b e l i ef s a b o ut t h e unkno wn asp ects o f t h e p r ob lem a n d u s e t h ese b e liefs in m a ki n g th eir d ecisio n s. F o r e xa m p le, a p l a y er c h o o ses his strategy a ccor din g to his b eliefs a b ou t w ha t o th er pla y ers m a y pla y , a n d h e m a y r e a c h t h e s e b e l i e f s t h r o u g h a c o m b i n a t i o n o f r e a s o n i n g a n d t h e k n o w l e d g e of pa st b e ha v i o r . T h i s i s c alled d e c ision m a k ing u n d e r unc e rtai nt y .
A s esta b l ish e d b y S a v ag e a n d th e o thers, u n d e r s o m e r easo na ble a ssum p tion s, su c h su b j ecti v e b e li efs c a n b e rep r esen ted b y a pro b a b ilit y d istrib ut io n , in th e s e n se tha t th e d ecision m a k e r fi nd s a n e v e n t m o re lik e ly t h a n an ot he r i f a n d o n ly if th e p rob a b ilit y di st ri but i o n as s i g n s h i g he r p ro ba bi l i t y t o t h e f ormer e v e n t t h a n l a tt e r . I n t ha t c as e , u s ing t he p r ob a b ilit y d is tribu t ion , on e c a n co n v e r t a de cision pro b le m u n d e r u nce r ta in t y to a d e c ision p rob l em un d e r r isk , a n d a pp ly th e a n a ly sis o f t he pr ev iou s lec t ur e. In th is lect ure , I w ill de scrib e t his p rog r am in d e ta il. In p a rticu l ar , I w ill d esc rib e
21
22 CHAP TE R 3 . DECI S I O N M AKI N G U NDE R UNCE R T AI NTY
• th e c on ditio n s s u c h c on sisten t b eliefs im p o se on the p r e feren ces,
• the e l i ci tati on of the b el i e fs f rom the p ref e rences, and
• th e r e p r esen ta tion of th e b eliefs b y a p ro ba bilit y d istrib utio n.
3. 1 A cts, S t ates, C on sequ e n c es, an d E xp ected U ti l - it y R e p r e se n t a t io n
Con s i d e r a fi nite set C o f co ns e q ue nc es . L e t S b e th e set o f all s tates o f t he w o r l d . T a k e a set F of act s f : S → C as th e s et of altern ativ es (i .e. , set X = F ). E a c h sta te s ∈ S d escrib es a l l t h e relev a n t asp ects o f t h e w o rld, hen c e t h e states a r e m u t u a lly exclu s i v e. M o reo v er, t he consequence f ( s ) of act f de p ends o n t he true s t a te o f t he w o rl d. H e nc e , th e d ecisi o n m a k er m a y b e u n c ertain a b ou t t he co n sequ e n ces of his acts. R eca l l tha t th e d ecisio n m a k e r c a r es o n ly a b ou t t h e con sequ e n ces, b u t h e n eeds to c h o o se a n a ct.
Q
E x am pl e 1 (G am e as a D e ci si on P r ob l e m ) C o n s id e r a c o m p l e te i n f o r m a tio n g a m e w ith s e t N = { 1 ,..., n } o f pl a yers in w hich e a ch p l ayer i ∈ N has a s t r a t e g y sp ac e S i . T h e d e c isio n p r o ble m o f a p la ye r i c a n b e d escrib e d as f o l l ow s. Sinc e h e c ar es ab ou t t he str a te g y pr o fi l e s, t h e s e t o f c o ns e q ue nc es i s C = S 1 ×· · · × S n . S i n c e h e d o e s n o t k n o w w hat the o ther p l ayers p l a y, the s et of sta t es is S = S − i ≡ j / = i S j . S i n c e h e c h o o s e s am on g h i s st r a t e gi es, t he set o f a ct s i s F = S i , w h e re ea c h s t ra t e g y s i is r e p r e s en te d a s a fu n c tio n s − i 7 → ( s i , s − i ) . ( H e r e , ( s i , s − i ) is th e s tr a t e g y p r o fi le in w h ich i pl ays s i an d t he others pl ay s − i .) T r a d itio n a l l y, a c o m p l ete - in fo r m a t io n g a m e i s d e fi n e d b y a ls o i n c lu d i n g th e V N M u tility f u n ctio n u i : S 1 ×· · · × S n → R for e ach p l a yer. F i x i n g such a u til i ty f u ncti on i s e q ui val e nt t o fi xi n g t he p r e fer e n c es on al l l ot t e ries on S 1 ×· · · × S n .
W e w o uld lik e t o r epresen t t he decision m a k e r’s p r e feren c e r elatio n º on F by s o m e
U : F → R suc h tha t
U ( f ) ≡ E [ u ◦ f ]
(in t h e sen se o f (O R )) w h e r e u : C → R is a “ ut ilit y f u n c tion ” o n C and E is a n
exp ecta t ion o p e ra tor o n S . T h a t i s , w e w a n t
f º g ⇐⇒ U ( f ) ≡ E [ u ◦ f ] ≥ E [ u ◦ g ] ≡ U ( g ) . (E U R )
3 . 2 . ANS C OM BE - A UMANN M O DE L 23
In th e f or m u lati on of V o n N eu m a n n an d M orgenstern , t h e p r ob ab ili t y distrib u ti on (and he nc e t he exp e ct a t i o n o p e rat o r E ) i s o b j ectiv e ly giv e n. In fa ct, a cts a re for m u l ated a s lott eries, i.e . , p rob a b ilit y d istribu t io ns o n C . I n s uc h a w o rl d, a s w e ha v e s e e n i n t h e last lectu r e, º i s repres e n t a bl e i n t he s e ns e o f ( E U R ) i f a n d o nl y i f i t i s a co n t i n uo us
p r eferen ce r e latio n a n d s a t is fi es t h e I nde p e nde nc e A xi o m .
F o r t he ca ses of ou r c on cern in this lectu re, t here i s n o o b jectiv ely g iv en p r ob ab ili t y di st ri but i o n on S . W e t herefo re need to determ ine t h e d ecisio n m a k e r’s ( sub j ectiv e ) p r ob ab ili t y assessm en t o n S . T hi s i s d one i n t w o i m p o rt an t f orm u l a t i ons . Fi rs t , Sa v a ge ca refully elicits t he b e liefs an d r ep resen t s the m b y a p rob a b ilit y d istrib utio n i n a w o r l d w i th n o o b jec t iv e p ro ba bilit y i s g iv en. S ec on d, A n sco m b e a nd A u m a n n sim p ly u ses ind i ff er en ce b e t w een s o m e l otteries an d a cts t o e licit pr eferen ces. I w i l l fi rst d escri b e A n scom b e a n d A u m a n n ’ s t ra cta b l e m o del , an d t h e n p resen t S a v age’s d eep er a n d m o r e u sef u l an alysis.
3. 2 A ns c o m b e - Aum a nn M o del
A n scom b e a n d A u m a n n c on sider a tr actab l e m o d el in w h ic h t he d ecision m a k e r’s s ub - jectiv e p rob a b ili t y a ssessm en ts a r e d eterm i n e d u sin g h i s a ttitud e s t o w a r ds the l otteries (w ith o b j ectiv e ly giv e n p ro ba b i lities) as w e ll as to w a rd s t h e a c ts w i th u n certa i n c on se - qu en ces. T o d o this, t h e y c on sider t h e d ecision m a k e r’s p r e feren ces o n the set P S of all “a cts” w h ose o u tco m e s a re l o tter i e s o n C , w h e r e P is the set o f a l l l o tter i es (p rob a b ili t y di st ri but i o n s o n C ) . In the l anguage d e fi n e d a b o v e , t h e y a ssum e th at th e c o n sequences an d t h e decision m a k e r’s p ereferences o n t h e set of con sequ e n ces ha v e the s p e cial stru c - t u re of V o n- N e ua m a nn a n d M o r ge ns t e rn mo de l .
In th is set up , i t i s s traig h tfo r w a rd to determ i n e t h e decision m a k e r’s p rob a b ili t y assessm en ts. C o nsid er a s u b set A of S an d a n y t w o c on sequ e n ces x, y ∈ C wi t h x Â
y . C o n s i d e r t h e a c t f A tha t yield s th e s u r e l o ttery o f x on A , 1 an d t he sur e lottery
of y on S \ A . ( Se e F i g ure 3 . 1 . ) U nde r s o m e c o n t i n u i t y a s s um pt i o ns ( w hi c h a r e a l s o n ecessary for r epr esen ta b i lit y), t here exists som e π A ∈ [0 , 1] suc h tha t th e d ecision mak e r i s i ndi ff eren t b et w een f A an d t h e act g A th at alw a ys yield t h e l o tter y p A tha t giv e s x wi t h probabi l i t y π A and y w i th p r ob a b ilit y 1 − π A . T he n, π A is the ( sub j ectiv e )
1 That is, f A ( s )= x whenev er s ∈ A where t he l o ttery x assi gns p robabilit y 1 to the c onsequence x .
24
CHAP TE R 3 . DECI S I O N M AKI N G U NDE R UNCE R T AI NTY
6
-
f A
x d 1 - x
x
y d 1 - y
y
A S \ A
6
-
A
S \ A
g A
π A © * © x
© © ©
P A d H ©
H H H 1 − π A
H H j y P A
F i gu re 3.1: F i gu re f or A n scom b e a nd A u m a n n
3 . 3 . S AVA G E M O D E L
25
p r ob ab ili t y the d ecisio n m a k e r a ssi g n s t o t h e ev en t A – u n d er th e a ssu m p tion tha t π A d o es no t d ep end o n w h i c h altern ativ es x and y a r e u s e d . I n t h i s w a y , o n e o b t a i n s a p ro ba bilit y d istrib utio n o n S . U s i ng t h e t he o r y o f V on N e umann a nd M o rge n s t e r n, on e t h e n o b t a i ns a r ep resen tatio n th eo rem i n t h i s e xten d e d s p a ce w h ere w e h a v e b oth su b j ecti v e u n certa in t y a n d o b j ecti v ely g iv en risk.
W h ile t h i s i s a tra c ta ble m o d e l , i t h as t w o m a j or lim ita t ion . F i r s t, th e a n a ly sis generates l i t tl e i nsigh t s i n t o h o w one s houl d t hin k ab o u t t he sub j e c tiv e b e liefs a n d t h e ir rep r esen ta tion thro u g h a pro b ab il it y d istrib uti o n . S eco n d , i n m a n y d ecision p ro blem s th ere m a y no t b e r elev an t i n t ri n s ic ev en ts tha t ha v e o b jecti v ely g iv en pro b a b i lities a nd ric h en o u g h to determ i n e t h e b e li efs o n t h e ev en ts th e d ecision m a k e r i s u n certa in a b ou t.
3. 3 S a v age M o d el
Sa v a g e de v e l o ps a t he o r y w i t h p urel y s ub j e c t i v e u nc e r t a i n t y . W i t hout us i n g a n y o b j e c - tiv e ly giv e n p ro b a b i lities, u n d e r c erta in a ssu m p tion s o f “ tigh tn ess” , h e d eriv es a u niqu e p r ob ab ili t y d i stribu tion on S th at rep r esen t t h e decision m a k e r’s b el iefs em b e dd ed i n hi s p ref e rence s , and t he n u s i ng t h e t he ory o f V o n N e umann a nd M o rge n s t e r n h e o bt ai n a r e p re sen ta tion t h e o rem – in w h ic h b o t h u tilit y fu nc tion a n d t h e b e liefs a r e d e r iv ed fr o m t h e p r e fer e n c es.
Ta k e a s e t S of st ates s of th e w orld, a fi nite set C of c o nse q uenc es ( x, y , z ), a n d t ak e th e set F = C S of act s f : S → C as th e s et of altern ati v es. F i x a relation º on F . W e w o u l d lik e t o fi n d necessa ry a n d s u ffi c i e n t c o n d i t i o n s o n º so th at º ca n b e r ep resen t ed by s o m e U in the sen se of (E U R ); i.e., U ( f ) = E [ u ◦ f ] . I n t h i s r epr esen ta tion , b o t h t h e
ut i l i t y f unc t i o n u : C → R an d t h e p r ob a b ilit y d istrib ut io n p on S ( w hi c h de t e rmi n e s
E ) a re deriv e d f rom º . T h e or em s 2 an d 3 giv e u s th e fi r s t n ecessa ry co n d ition :
P 1 º is a p r e fe r e n c e r ela tio n .
T h e s econd c ond i tion is the cen tral p i ece o f S a v age’s t heory:
3. 3 . 1 T he Sure- t hi ng P r i n c i pl e
T h e S u r e - th in g P r i n c ip le If a d e c ision m a ker p r efers s om e a ct f to so m e a c t g
w h en he kn ow s t hat s om e e vent A ⊂ S o c curs, a n d if he p r efers f to g w h en he kn ow s
26
CHAP TE R 3 . DECI S I O N M AKI N G U NDE R UNCE R T AI NTY
th a t A do es not o c c ur, t hen h e m ust p r e fer f to g w hen he d o es no t k now w hether A
occ u r s o r n o t .
T h is is the i nform a l sta tem e n t o f the s u r e-th ing p rinci p le. O n c e w e d eterm i ne th e d ecision m a k er’s p ro ba b i lit y a ssessm en ts, th e s u r e-thin g p rin ciple w ill giv e u s the I n d e - p e nd en ce A x iom , A x iom 4, of V o n N e um an n a nd M o rgenstern . T h e f o l lo w i n g form u l a - t i on of Sa v a ge , P 2, not o nl y i m p l i e s t hi s i nf orm a l s t a t e m e n t , b ut al s o al l o ws us t o s t at e i t fo rm a ll y , b y a llo w in g u s t o d e fi n e con d i ti o n a l pr eferen ces. (T h e co n d ition a l p references a r e a l s o u s e d t o d e fi ne t h e b eliefs.)
P 2 Le t f, f 0 , g , g 0 ∈ F an d B ⊂ S be s u c h t h a t
f ( s ) = f 0 ( s ) and g ( s ) = g 0 ( s ) at e a c h s ∈ B
an d
f ( s ) = g ( s ) an d f 0 ( s ) = g 0 ( s ) at e a c h s ∈ / B.
If f ≥ g , t h e n f 0 ≥ g 0 .
3. 3. 2 C ondi ti onal pref erences
Us i n g P 2 , w e c a n d e fi ne t h e c ondi t i o n a l pref e r ence s a s f o l l o ws . G i v e n an y f, g , h ∈ F
| B
| B
an d B ⊂ S , d e fi ne acts f h an d g h by
an d
h ( s ) = f ( s ) if s ∈ B
f
(
| B h ( s ) ot herwi s e
g
(
h ( s ) = g ( s ) if s ∈ B .
| B h ( s ) oth e rw i s e
| B
Tha t i s , f h
an d g h
agree w i t h f an d g , r e s p e c t i v e l y , o n B , but whe n B do es n o t o ccu r,
| B
th ey yield t h e sam e d e fa u l t a ct h .
| B
| B
De fi ni t i on 6 (C ondi ti onal P r ef er enc e s ) f ≥ g gi v e n B i ff f h ≥ g h .
P 2 guaran t e e s t h at f ≥ g giv en B is w e ll-d e fi ne d, i . e . , i t do e s no t d e p end o n t he de f a ul t a ct h . T o see th is, t ak e a n y h 0 ∈ F , a n d d e fi ne f h 0 and g h 0 a cco rdin gl y . C h ec k
th at
| B | B
f h ( s ) ≡ f ( s ) ≡ f h 0 ( s ) an d g h ( s ) ≡ g ( s ) ≡ g h 0 ( s ) at e a c h s ∈ B
| B | B | B | B
3 . 3 . S AVA G E M O D E L
27
an d
0 0
f h ( s ) ≡ h ( s ) ≡ g h ( s ) an d f h ( s ) ≡ h 0 ( s ) ≡ g h ( s ) at eac h s ∈ / B.
| B | B | B | B
T h erefor e, b y P 2 , f h ≥ g h i ff f h 0 ≥ g h 0 .
| B | B | B | B
N o te tha t P 2 p r ecisely sta tes t ha t f ≥ g gi v e n B is w e ll-d e fi ned. T o see this, t ak e f
| B
| B
an d g 0 arbi t r ari l y . S e t h = f an d h 0 = g 0 . C lea r l y , f = f h an d g 0 = g h 0 . M o r e o v e r , t h e
co nd ition s in P 2 de fi ne f 0 an d g as f 0 = f h 0 an d g = g h . T h u s , t h e c o n c l u s i o n o f P 2 ,
| B | B
“if f ≥ g , t h e n f 0 ≥ g 0 ” , i s t h e s a m e a s “ i f f h ≥ g h , t h e n f h 0 ≥ g h 0 .
| B | B | B | B
Exe r c i s e 2 S h o w th a t th e i n f o r m a l s ta te m e n t o f th e s u r e- th in g p r i n c ip le is fo r m a l ly tr u e : g ive n a n y f 1 , f 2 ∈ F , a n d a n y B ⊆ S ,
[( f 1 ≥ f 2 given B ) an d ( f 1 ≥ f 2 given S \ B )] ⇒ [ f 1 ≥ f 2 ] .
1 | B
[H in t: d e fi ne f := f 1 = f f 1
f 1
= f
1 | S \ B
, g 0 := f 2 = f f 2
f 2
= f
2 | S \ B
, f 0 := f f 2
f 1
= f
2 | S \ B
, a n d
2 | B
1 | B
2 | B
g := f f 1
f 2
= f
1 | S \ B
. N oti c e t hat y ou do not n e e d t o i n voke P 2 (expl i ci tl y).]
Nu l l E v e n t s I m a g i n e t ha t t he de c i s i o n mak e r r emai ns i n di ff erence to w a rds a n y c h anges made t o an ac t i on wi t h i n an ev en t B . N am el y , fo r a n y acts f an d g , t h e d ecisio n m a k e r rem a ins i ndi ff er en t b et w een f an d g , s o l o n g a s f and g are i d e n t ical on S \ B , n o m a t t e r ho w w i d e l y d i ff er o n B . I n t h a t c a se, it is p l au sible t o d edu c e t ha t t he decision m a k e r do e s no t t hi nk t h at e v e n t B ob ta i n s. S u c h e v e n t s a re ca lled nul l .
De fi ni t i on 7 A n even t B is sa id to b e nu l l if a n d o n l y i f f ∼ g given B fo r a l l f, g ∈ F .
R eca ll th at ou r a im is to d e v e lop a theo ry tha t relates t h e pr eferen ces on the a cts
w i th u n certa i n c o n sequences t o t he p r eferen ces on the c o n sequ e n ces. (T h e p r eference relation ≥ on F i s extended to C by e m b e d d i n g C in to F a s con s ta n t acts. T h a t i s, we s a y x ≥ x 0 i ff f ≥ f 0 wh er e f an d f 0 a r e c o n stan t a cts th at tak e v a lu es x an d x 0 , resp ecti v ely . ) T he next p o stula t e d o e s t h i s f o r con d i ti o n al p r eferen ces:
P 3 Gi v e n a ny f, f 0 ∈ F , x, x 0 ∈ C , a n d B ⊂ S , i f f ≡ x , f 0 ≡ x 0 , a n d B is n o t n u l l, th en
f ≥ f 0 given B ⇐⇒ x ≥ x 0 .
Fo r B = S , P 3 i s r ather t rivial, a m a tter of de fi ni t i o n of a c o n s e q ue nc e a s a c o ns t a n t act. W h en B = / S , P 3 i s n eed ed a s a n ind e p e nd en t p o stu l a te. B eca use t h e co nd ition a l p r eferen ces a re de fi n e d b y settin g th e o u tco m e s o f t h e acts to the s a m e d efa u lt act w h e n th e e v e n t d o es n o t o ccu r, an d t w o d i stinct co nsta n t acts ca nn o t tak e th e s a m e v a l ue.
28
CHAP TE R 3 . DECI S I O N M AKI N G U NDE R UNCE R T AI NTY
3 . 3 . 3 R e p r e s e n t in g b e l ie fs w i th q u a l ita t iv e p r o b a b i lit ie s
W e w a n t to determ ine t he decisi on m a k e r’s b eliefs re fl ected i n ≥ . T o w ards this end, giv en a n y t w o e v e n ts A and B , w e w a n t t o d e t e r m i n e w h i c h e v e n t t h e d e c i s i o n m a k e r th inks is m o re li k e l y . T o d o t h i s, ta k e a n y t w o con seq uen c es x, x 0 ∈ C wi t h x  x 0 . T h e d ecision m a k e r i s a sk ed to c h o ose b e t w een t he t w o g am b l es (acts) f A an d f B wi t h
f A ( s ) =
x if s ∈ A
(
, (3 . 1 )
(
x 0 oth e rw i s e
f B ( s ) =
x if s ∈ B
.
x 0 oth e rw i s e
If th e d ecision m ak er p r efers f A to f B , w e c a n i n f e r t h a t h e fi nds e v e n t A m o r e lik e ly th an ev en t B , f o r h e p r efers to g et the “ p r ize” w h en A o c curs , r at he r t han w he n B oc c u r s .
De fi ni t i on 8 Ta k e a n y x, x 0 ∈ C w ith x  x 0 . G i v e n a n y A, B ⊆ S , A is s a id to b e at lea s t a s lik e l y a s B (d eno t e d by A ≥ ˙ B ) i f a n d o n l y i f f A ≥ f B , w h e r e f A and f B de fi ne d by (3 .1).
W e w a n t to m a k e sur e th at this y i e l d s w e ll-de fi n ed b eliefs. T ha t i s, i t sho u ld n o t b e th e c ase t ha t, w h en w e use s o m e x an d x 0 , w e i n f er tha t d ecisio n m a k er fi nds A strictly m o re lik e l y t h a n B , b u t w h e n w e u s e s o m e o t h e r y and y 0 , w e i n f e r t h a t h e fi nds B strictly m o re lik e l y t ha n A . T hen n ext a ssum p tion gu ara n ties th at ≥ ˙ is in d e e d w e ll- d e fi ned.
P 4 Gi v e n a n y x, x 0 , y , y 0 ∈ C w ith x  x 0 and y  y 0 , d e fi ne f A , f B , g A , g B by
f A ( s ) =
f B ( s ) =
x if s ∈ A x 0 ot herwise
(
(
x if s ∈ B x 0 ot herwise
, g A
, g B
( s ) = (
( s ) = (
y if s ∈ A y 0 ot herwi se
y if s ∈ B
.
y 0 otherw i s e
Th e n ,
f A ≥ f B ⇐⇒ g A ≥ g B .
Fi na l l y , m ak e s ure t hat w e c an fi nd x and x 0 wi t h x  x 0 :
3 . 3 . S AVA G E M O D E L
29
P 5 Ther e e xi st som e x, x 0 ∈ C such t h at x  x 0 .
We h a v e n o w a w e l l - d e fi ned r elation ≥ ˙ that determ i n es whi c h o f t w o ev en ts i s m o re lik el y . It t u rn s o ut th a t , ≥ ˙ is a qu a l ita t ive p r o b a bility , d e fi n e d a s f o llo w s :
De fi ni t i on 9 A r e l a t i o n ≥ ˙ b e t w e e n t he events i s s ai d t o b e a q u alitat iv e p rob a bilit y i ff
1. ≥ ˙ is c o m p le te a n d t r a n s itive ;
2. f o r a ny B, C , D ⊂ S wit h B ∩ D = C ∩ D = ∅ ,
B ≥ ˙ C ⇐⇒ B ∪ D ≥ ˙ C ∪ D ;
3. B ≥ ˙ ∅ fo r e a c h B ⊂ S , a n d S Â ˙ ∅ .
Exe r c i s e 3 S h o w th a t , u n d er th e p o s tu la te s P 1 - P 5 , t h e r e la tio n ≥ ˙ de fi ne d i n D e fi nit i on 8 i s a q u a l ita tive p r o b a b ility.
3. 3 . 4 Q ua n t i f yi ng t h e q ua l i t a t i v e probabi l i t y a s s e s s m en t s
Sa v a g e us es fi n itely-a d d i tiv e p r o b a bility m e a s u r e s o n th e d is cr ete s igm a -a lge b r a :
De fi ni ti on 10 A p r ob ab ili t y m e asu r e is a n y f u n ctio n p : 2 S → [0 , 1] wi th
1. i f B ∩ C = ∅ , t h e n p ( B ∪ C ) = p ( B )+ p ( C ) , a n d
2. p ( S ) = 1 .
W e w o uld l ik e t o r ep rese n t ou r q u a litativ e p rob a b ilit y ≥ ˙ w i th a ( q u a n titativ e ) p rob - ab ilit y m easu re p i n th e sen se tha t
B ≥ ˙ C ⇐⇒ p ( B ) ≥ p ( C ) ∀ B, C ⊆ S. (Q P R )
Exe r c i s e 4 Show t h at , i f a r e l a t i on ≥ ˙ ca n b e r e p re s e n t ed b y a p ro ba b i l i t y m e a s u r e , t h e n
≥ ˙ m u st b e a q u a l i tat i ve pr ob abil i t y .
30
CHAP TE R 3 . DECI S I O N M AKI N G U NDE R UNCE R T AI NTY
Wh e n S is fi ni t e , s i n c e ≥ ˙ is co m p lete a n d t ra n s i t i v e, b y T h eorem 2 , i t c a n b e r e p r e - sen ted b y s om e f uncti o n p , b ut th ere m i g h t b e no suc h fun c tio n satisfying th e c o n d i tion 1
in th e d e fi nition of pr ob ab il it y m easu re. M or eo v e r, S is t y pic a lly in fi nite. (Inc ide n tall y , th e t h e o r y t h a t f ollo w s req u ires S to b e in fi nite.)
W e a r e i n terested i n t he p r eferences t ha t c an b e co nsid ered co m i n g fro m a d ecision m a k e r w h o ev alu a tes t h e acts w i th resp ect to th eir e xp ected u til i t y , u sin g a u tili t y f u n ction on C a n d a p r o b a b ilit y m easu re o n S t h a t he ha s i n h i s m i nd. Our t as k at this p o in t i s to fi n d w h at pr ob ab il it y p ( B ) he assig n s t o s om e a rbitr a ry ev en t B .
I m a g i n e t h a t w e a s k t h i s p e r s o n w h e t h e r p ( B ) ≥ 1 / 2 . D ep en din g on his s incere an sw er,
w e d e ter m ine w h eth er p ( B ) ∈ [1 / 2) or p ( B ) ∈ [0 , 1 / 2 , 1] . G i v e n t h e i n t e r v a l , w e a s k whe t he r p ( B ) is in th e u pp e r ha lf or t h e l o w er h a lf o f th is in te rv al, a n d d e p e nd in g o n h i s a n s w er, w e o b tain a s m a lle r in te rv al t h a t co n t a i n s p ( B ) . W e d o t h i s a d i n fi nitum .
Si nc e t he l e ngt h of t h e i n t e r v a l a t t he n th iter ation i s 1 / 2 n , w e l e a r n p ( B ) at t h e e nd. Fo r e x a m p l e , l e t ’ s s a y t h a t p ( B ) = 0 . 77 . W e fi rst a sk i f p ( B ) ≥ 1 / 2 . H e s a y s Y es. We a s k n o w i f p ( B ) ≥ 3 / 4 . H e s a y s Y es. W e then ask i f p ( B ) ≥ 7 / 8 . H e s a y s N o .
No w, w e a s k i f p ( B ) ≥ 13 / 16 = ( 3 / 4+ 7 / 8) / 2 . H e s a y s N o a g a i n . W e n o w a s k i f
p ( B ) ≥ 25 / 32 = ( 3 / 4+ 7 / 8) / 2 . H e s a y s N o . N o w w e a s k i f p ( B ) ≥ 49 / 64 . H e s a y s Y e s n o w . A t t h i s p o i n t w e k n o w t h a t 49 / 64 = ˜ 0 . 765 ≤ p ( B ) < 25 / 32 = ˜ 0 . 781 . A s w e a s k fu rth er w e g et a b etter a n s w er.
T h is is w h a t w e w i ll d o , a l b eit i n a v e ry a b str act setu p . A ssum e tha t S is in fi ni t e l y divisibl e u n d er ≥ ˙ . T h a t i s , S has
• a p a r tition { D 1 , D 2 } wi t h D 1 ∪ D 2 = S and D 1 ∼ ˙ D 2 ,
1 1 1 1 1 1
• a p ar tition { D 1 , D 2 , D 3 , D 4 } wi t h D 1 ∪ D 2 = D 1 , D 3 ∪ D 4 = D 2 , a n d D 1 ∼ ˙ D 2 ∼ ˙ D 3 ∼ ˙ D 4 ,
2 2 2 2
• .
2 2 1 2 2 1
2 2 2 2
n
and D 1 ∼ ˙ ··· ∼ ˙ D 2 n ,
n
n
n
n − 1
• a p ar titi o n © D 1 , ··· , D 2 n ª wi t h D 1 ∪ D 2 = D 1
n
n
n − 1
, ..., D 2 k − 1 ∪ D 2 k = D k
, .. . ,
n n
• .
ad i n fi nitum .
3 . 3 . S AVA G E M O D E L
31
S |
|||
D 1 |
D 2 |
||
1 |
1 |
||
D 1 |
D 2 |
D 3 |
D 4 |
2 |
2 |
2 |
2 |
. |
. |
. |
. |
n
Exe r c i s e 5 C h e c k t h a t, if ≥ ˙ is r e pr esen te d b y s o m e p , t hen w e m u s t h ave p ( D r ) = 1 / 2 n .
G i v e n a n y ev en t B , f o r e a c h n , d e fi ne
k ( n, B ) = m a x r | B ≥ ˙ D i ,
( [ r )
n
i =1
i =1 n
w h ere w e u se th e c on v e n t io n t h a t ∪ r D i = ∅ w h en ev er r < 1 . D e fi ne
p ( B ) : = l i m
k ( n, B )
n
. (3 . 2 )
n →∞ 2
Che c k t ha t k ( n, B ) / 2 n ∈ [0 , 1] is n o n - decrea sing in n . T heref o re, lim n →∞ k ( n, B ) / 2 n is we l l - d e fi ne d.
Si nce ≥ ˙ is tran sitiv e , i f B ≥ ˙ C , t h e n k ( n, B ) ≥ k ( n, C ) for e ac h n , y ieldin g p ( B ) ≥ p ( C ) . T h i s p r o v e s t h e = ⇒ p a r t of (Q P R ) u n d er th e a ssu m p tion th at S is in fi ni t e l y - di vi s i bi l e . T he o t her p art ( ⇐ ) i s i m p lie d b y the f ollo w i n g as sum p tio n :
P 6 ’ If B Â ˙ C , t h e n t h e r e e x i s t s a fi n ite p a r t itio n { D 1 ,..., D n } of S such t h at B Â ˙ C ∪ D r fo r e a c h r .
U n de r P 1 - P 5 , P 6 ’ also im plies t ha t S is in fi ni t e l y - d i v i s i b i l e . ( Se e t he de fi nition of “ t i g h t ” a n d T h e o r e m s 3 a n d 4 i n S a v a g e . ) T h e r e f o r e , P 1 - P 6 ’ i m p l y ( Q P R ) , w h e r e p is de fi ned b y ( 3.2).
Exe r c i s e 6 C h e c k t hat, i f ≥ ˙ is r e p r e s en te d b y s o m e p 0 , t h e n
k ( n, B ) ≤ p 0 ( B ) < k ( n, B )+1
2 n 2 n
at e a ch B . H e n c e , i f b o t h p an d p 0 re p r e s e n t ≥ ˙ , t h e n p = p 0 .
P o stula t e 6 w ill b e so m e w h a t stron g er th an P 6 ’. (It i s a lso u sed to ob ta i n th e co n t in u i t y axio m o f V o n N e u m a n n a nd M o rgen stern.)
32
CHAP TE R 3 . DECI S I O N M AKI N G U NDE R UNCE R T AI NTY
P 6 Gi v e n a n y x ∈ C , a n d a n y g, h ∈ F wit h g  h , t h e r e ex ists a p a r titio n { D 1 ,..., D n }
of S such that
g  h x and g x  h
fo r e a c h i ≤ n wh e r e
h x ( s ) =
( x
i
i i
h ( s ) otherw i s e
an d g x ( s ) = .
g ( s ) ot herwise
if s ∈ D i ( x if s ∈ D i
i
Ta k e g = f B and h = f C (d e fi ned i n ( 3.1)) t o o b t ain P 6’.
The o rem 5 U n der P 1-P6, t her e exist s a unique p r o b a bi l i ty m e asur e p su ch th at
B ≥ ˙ C ⇐⇒
p ( B ) ≥ p ( C )
∀ B, C ⊆ S.
(Q P R )
3. 3.5 E xp ect e d U t i li t y R e presen tati on
In C h ap ter 5, S a v age sh o w s t hat, w h en C is fi nite, P o s tula tes P 1 -P 6 i m p l y A x iom s 2 - 4 o f V o n N e u m a n n a n d M o r g e n s t e r n – a s w e l l a s t h e i r m o d e l i n g a s s u m p t i o n s s u c h a s o n l y th e p rob a b ilit y d istribu t ion s o n th e s e t of priz es m a tte r . I n t h i s w a y , h e o b t ain s th e fo llo w i n g T h e o rem : 2
The o rem 6 A ssu m e tha t C is fi n ite . U n d er P 1 -P 6 , th er e e x i st a u tility f u n c t io n u :
C → R and a pr ob ab i l i t y me as ur e p : 2 S → [0 , 1] su ch tha t
f ≥ g ⇐⇒
fo r e a c h f, g ∈ F .
p ( { s | f ( s ) = c } ) u ( c ) ≥ p ( { s | g ( s ) = c } ) u ( c )
X X
c ∈ C c ∈ C
2 Fo r t h e i n i fi nt e C , w e n e e d t h e i n fi nite v e rsion of t h e sure-thin g prin cip le:
P 7 If we have f ≥ g ( s ) gi ve n B for e ach s ∈ B , t h e n f ≥ g giv e n B . L ikewise, if f ( s ) ≥ g give n B
for e ach s ∈ B , t h e n f ≥ g giv e n B .
U n der P 1-P7, w e g et t h e e x p ect ed ut ilit y repre s en tat i on for g eneral case .
M IT OpenCourseWare http://ocw.mit.edu
1 4.123 Microeconomic Theory III
Spring 2010
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .