Cha p t e r 2
D e c i si on M a ki ng under R i s k
In the p revio u s l ectu r e I co nsid ered ab stra ct c h oice p r o b lem s . I n t h i s section , I w i ll fo cu s on a s p e ci a l cl a s s o f c ho ice p rob l em s a n d im p o se m o re str u cture o n t h e decision m a k e r’s p r eferen ces. I w ill con s ider situa t ion s in w h ic h t h e d ecisio n m a k e r c a r es o n ly a b ou t t h e consequences, suc h as the a m o un t o f m oney in his b ank a ccoun t , b ut he m a y n ot b e able t o c h o o s e di rec t l y f r om t h e s et of c o ns e q ue nc es . I ns t e ad, h e c ho o s es f r o m al te rna t i v e s th at d e te rm in e t h e c o n seq u e n ces p r o b a b ilistica ll y , su c h a s a l o ttery t i c k et.
In this lec t ure , I a ssu m e tha t , f or a n y a lte r na tiv e x , t h e p r ob ab ilit y d is tribu t ion o n th e set o f co n sequ e n ces in du ced b y x is giv e n. T h at i s , a l t hough d eci s ion m ak er do es no t k no w t he c o ns e q ue nc e o f c ho o s i n g a g i v e n a l t e r na t i v e , h e i s g i v e n t h e p ro ba bi l i t y of ea c h con sequ e n c e f ro m c h o o s i n g t h a t a ctio n. T h is is called d ecisio n m a kin g un d e r ri sk . S u c h a s s um ptio ns ca n b e p lau s ible in re la tiv e ly fe w s it ua tion s, su c h as c h a n c e ga m e s i n a casin o , i n w hic h th ere a re ob jectiv e pro b ab i lities. In m o st ca ses of econ om ic in tere s t, th e a lt ern a tiv e s d o n ot co m e w i th p r o b a b ilities. T h e d ecisio n m a k e r f o r m s h i s su b j ecti v e b e liefs a b o u t t he co nsequences of h i s c h o i c es. T h is is called d ecision m a kin g unde r unc e r t a i nt y . I wi l l anal yz e t he de ci s i on m a ki ng under ri s k a s an i n t e rmedi a ry s t e p to w a rd an alyzi n g d ecisi o n m ak i n g u n d er un certain t y .
2. 1 C onsequenc e s a nd Lot t eri e s
Con s i d e r a fi nite set C of c o nse q uenc es . A lo t t e r y is a p ro ba bilit y d istribu t ion p :
C → [0 , 1] on C , w h e r e P c ∈ C p ( c ) = 1 . T h e set o f all l otteries is d e n o ted b y P . T h e
9
10
CHAP TE R 2 . D ECI S I O N M AKI N G U NDE R RI S K
consequences are e m b edded i n P a s p o i n t m a sses on sin g le l o tter i es. F or an y c ∈ C , I w i l l wr i t e c for b oth t he consequence c an d t h e p r o b a b ilit y d istrib utio n t h a t p u t s p rob a b ilit y
1 o n c . T he dec i s i o n ma k e r c are s a b o u t t he co ns e q ue nc e t ha t w i l l b e re a l i z ed, b ut he ne e d s t o c ho os e a l o t t ery . I n t h e l anguage o f t he t h e p re vi ous l ec t u re , t he s e t X of altern ativ es is P .
A l o ttery can b e d ep i c ted b y a tree. F o r exam ple, in Fig u re 1, L o ttery 1 d e p i cts a s itua tion in w h ic h t he de cision m a k e r g ets $ 1 0 w i th p r o b a b ilit y 1 / 2 (e.g. i f a co in to ss re sults i n H e a d ) a n d $ 0 w ith p rob a b ilit y 1 / 2 ( e . g . if th e c oin t o s s r e s ults in T a il). A l o ttery ca n b e sim p l e as in th e fi g u re, a ssig n in g a p ro b a b i l i t y to eac h co n sequ e n ce, or co m p o u n d as in F i g u r e 2.3, co n t ain i ng su ccessiv e b r a n c h es. T h e r ep resen t ati o n o f all l o tter i es a s p r ob ab ili t y d i strib utio ns incorp o r a t es the a ssu m p tio n s t ha t t he d ecision m a k e r i s c o n sequ e n t ialist, m e a n in g t ha t h e c ares on ly ab ou t t h e con sequ e n ces, an d t ha t h e ca n c om pu te th e p ro ba bilit y o f e ac h c on seq u e n c e u n d e r co m p o u n d i n g lo tter i e s .
1/2
1/2
10
Lo tt er y 1
0
Figure 2.1:
R e p r esen t ing t h e lotteries p a s v e ctor s , n ote t h a t P is a | C | − 1 di m e ns i o na l s i m pl e x . H e n ce, I w ill regar d P as a s u b set o f R | C | (on e ca n e n v ision i t a s a su b set o f R | C | − 1 as w e l l ). Endo wi ng R | C | w i th th e s tan d a rd E u clidean m etric, no te th at P is a c o n v e x a nd co m p act s ub set.
2 . 2 E x p ec te d U tilit y M a x i m i z a tio n – R e p r e sen ta - tion
W e w o uld lik e t o h a v e a th eo ry tha t con s tru c ts the d ecision m a k e r’s p references o n th e lotteries f r o m h is pr eferen ces o n th e l otteries. T h ere a re m a n y of them . T h e m o st
2 . 3. EXPECTED U TI LI TY M A XI MI Z A TI O N – C HARA CTERI ZA TI ON
11
w e ll -k no w n – a n d the m ost c an on ical and t he m o st usef u l – o n e is the t heory o f e xp ected u t ilit y m a x im iza t ion b y V o n N e u m an n a nd M o r g en ste r n. In t h is lect ure , I w ill fo cu s o n th is theor y .
De fi ni t i on 5 A r ela tio n º on P is sa id to b e rep r esen ted b y a v on N e um an n - M o r g en stern ut i l i t y f unc t i o n u : C → R if a n d o n l y i f
p º q ⇐⇒ U ( p ) ≡ X u ( c ) p ( c ) ≥ X u ( c ) q ( c ) ≡ U ( q ) ( VNM)
c ∈ C c ∈ C
fo r e a c h p, q ∈ P .
T h is sta t em en t h as t w o c ru cial p a r t s:
1. U : P → R rep r esen ts º i n th e o rd in al sense. T h at i s , i f U ( p ) ≥ U ( q ) , t he n t he de ci s i on mak e r fi nds l otter y p as go o d as lottery q . A n d co n v ersel y , if the d ecision ma k e r fi nds p at l e as t a s g o o d a s q , t h e n U ( p ) m u st b e at lea s t a s h igh a s U ( q ) .
2. T h e f u n ction U tak e s a particul ar form : f or eac h lottery p , U ( p ) is th e e xp ected va l u e o f u under p . T h a t i s , U ( p ) ≡ P c ∈ C u ( c ) p ( c ) . I n o ther w o rd s, th e d ecision
m a k e r a cts as i f h e w a n t s t o m ax im ize th e e x p e c te d v a l u e o f u . F or insta n ce, th e e xp ected u t il it y o f L o ttery 1 f o r th e d ecisi o n m ak er i s E ( u ( L o tter y 1 )) =
1 u (10) + 1 u (0) . 1
2 2
2. 3 E xp ect e d U ti l i t y M a xi m i zati on – C haract eri - zat i on
T h e m a i n o b j ectiv e o f t h i s l ectu re is to exp l ore t he co n d ition s on preferen ces u n d e r w h i c h th e v o n -N eum a n n M o rg en stern r ep resen t ati o n i n ( V N M ) is p o ssib l e. In th i s w a y , on e m a y h a v e a b e tter i n s igh t s i n t o w h a t i s i n v o l v e d i n e xp ected u til i t y m a xim i za tion .
F i rst, as expla i n e d a b o v e , r epresen ta tion in (V N M ) i m p li es th at U rep r esen t s º in th e
or din a l sen se as w e ll. B u t, as w e h a v e seen in the p rev i o u s l ectur e , o rd ina l repr esen ta tion im p lies t h a t º is a p re fer e n c e r e l a t ion . T h is giv e s t h e fi rst n ecessary c on ditio n .
Ax i o m 2 ( P r e f e r e n c e ) º is c o m p le te a n d t r a n s itiv e.
1 If C w e re a c on tin uum, lik e R , w e w ould compute t he exp e cted utilit y o f p by R u ( c ) p ( c ) dc .
12
CHAP TE R 2 . D ECI S I O N M AKI N G U NDE R RI S K
Se co nd, i n ( V N M ) , U is a lin ear f un ctio n o f p , a nd he nc e i t i s c o n t i n u o u s . That is, ( V N M ) i n v olv e s c on ti n u ou s o rd inal represen tation . H ence, b y T heorem 3 o f t h e p r eviou s section , i t i s a lso n ecessa ry th at º is co n t in uo u s . T his g iv es the secon d n ecessa ry
co nd ition .
A x io m 3 (C o n tin u it y ) º is c o n tin u o u s .
R e c a l l f r o m t h e p re vi o u s l ec t u re t h a t c o n t i n ui t y m e ans t ha t t he upp e r - a nd l o w e r- co n t ou r s ets { q | q º p } and { q | p º q } a r e c l o sed fo r e v e ry p ∈ P . I n t h i s s p ecia l setu p, a s ligh t ly w e ak er v e rsi o n o f t h e co n t in uit y a ssu m p tion su ffi ces: for a n y p, q , r ∈ P , t h e sets { α ∈ [0 , 1] | αp + ( 1 − p ) q º r } an d { α ∈ [0 , 1] | r º αp + ( 1 − p ) q } a r e c lo sed . Y et an o t her v ersio n of th is a ssu m p tion is tha t for a n y p, q , r ∈ P , i f p  r , t h e n t h e r e e x i s t a, b ∈ (0 , 1) suc h that ap + ( 1 − a ) r  q  bp + ( 1 − r ) r .
B y T h eor e m 3 , A xio m s 2 an d 3 a r e n ecessa ry a n d s u ffi cien t f or a r ep resen t atio n b y a c o n t i n u o u s f u n c t i o n U . T h e v o n N eu m a nn a n d M o r genstern represen ta tion im p o ses a f u rt he r s t r uc t u re on U , r eq u i r i n g th at it is in fac t lin ear i n p rob a bilities. T h is lin ear i t y co nd ition c o rresp on ds to th e f o l l o w i n g con d itio n o n t h e p r eferen ce, w hic h i s called The Ind e p e nd enc e A x io m .
A x i o m 4 ( I ndep endence) Fo r a n y p, q , r ∈ P , a n d a n y a ∈ (0 , 1] , ap + ( 1 − a ) r º
aq + ( 1 − a ) r ⇐⇒ p º q .
T h a t is, t he d ecisio n m a k e r’s p reference b et w e en t w o l o t teri es p and q do e s not c hange if w e toss a ( p o ssib l y u n f air) c o in a n d g iv e h im a fi xed l ottery r if “t ail” co m e s u p . L e t p an d q b e the l otteries d e p i cted i n F i gu re 2.2. T h en , t h e lotteries ap + ( 1 − a ) r and aq + ( 1 − a ) r ca n b e d ep i c ted a s i n F i g u r e 2 .3, w her e w e to ss a c o i n b et w e en a fi xed lott ery r a n d o u r lotte r ies p an d q . A xiom 4 s tipulates t hat t he decisi on m a k e r w oul d n o t c h a n g e h is m i n d after t he co in toss. T h er efo r e, the I nd ep end e n c e A xiom ca n b e tak e n a s a n a xiom of “d yn am ic con s isten c y . ”
T h e I nd ep en den c e A xio m im p o ses a s tru c tu re o n th e i nd i ff e r e n c e s e t s t h a t i s i d e n t i c a l to the s tructure of the i so curv es of a l i n ear f uncti on U . T o g e t he r w i t h t he co n t i n uo us rep r esen ta tion th eor e m , th i s lead s t o a n e xp ected u ti lit y r ep resen t ati o n . In th e sequ e l, I w i l l de s c ri b e t h e s truct u re i n de tai l and p ro v e t h at t h e a b o v e axi o ms are s u ffi cien t f o r an exp ected u t ili t y rep r esen t ati o n . T o w a rds t h i s e n d , t he follo w i ng exer cise lists som e
2 . 3. EXPECTED U TI LI TY M A XI MI Z A TI O N – C HARA CTERI ZA TI ON
13
³ ³ ³ ³
P
p d ³ P P
P P
³ ³ ³ ³
P P P P
³ ³ ³ ³ ³ ³ ³ ³
P P
q d P ³
P
P
P P P P
Fi gure 2. 2: Tw o l ot te ri e s
³
³ ³ ³
p d ³ P
³ ³ ³ ³
³ ³ ³ ³ ³ ³ ³
³
q d P ³
P
¡ P P P
¡
¡
¡ a
d ¡
P P P P
¡ P P P
P
P
¡ P P
¡ P
¡ a
d ¡
@ @
− −
@ 1 a @ 1 a
@ @
@ @
@ r @ r
ap + ( 1 − a ) r aq + ( 1 − a ) r
Fi gure 2. 3: Tw o c omp o und l ot t e ri e s
14
CHAP TE R 2 . D ECI S I O N M AKI N G U NDE R RI S K
us e f ul i m pl i c at i o ns of t h e I ndep e nde nc e A xi om. Y ou s h o u l d pro v e t he l i s t e d p ro p e rt i e s b e for e y o u p ro ceed .
Exe r c i s e 1 F o r a ny pr efer enc e r e l a tion º th a t sa tis fi es the I ndep endenc e A x i om , s how th a t th e f o l lo w i n g a r e t r u e.
1. F o r a ny p, q , r , r 0 ∈ P wi th r ∼ r 0 an d a ny a ∈ (0 , 1] ,
ap + ( 1 − a ) r º aq + ( 1 − a ) r 0 ⇐⇒ p º q. (2 . 1 )
2. F o r a ny p, q , r ∈ P an d a n y r e al n u m b er a suc h th at ap +( 1 − a ) r, a q +( 1 − a ) r ∈ P , if p ∼ q , t h e n ap + ( 1 − a ) r ∼ aq + ( 1 − a ) r. (2 . 2 )
3. F o r a ny p, q ∈ P wit h p  q an d a ny a, b ∈ [0 , 1] wit h a > b ,
ap + ( 1 − a ) q  bp + ( 1 − b ) q. (2 . 3 )
4. Ther e e xi s t s c B , c W ∈ C s u ch th a t fo r a n y p ∈ P ,
c B º p º c W . (2 . 4 )
[H int: u s e c om pleteness a nd tr an sitivity to fi nd c B , c W ∈ C w ith c B º c º c W fo r al l c ∈ C ; t he n u s e i n duc t i o n o n t he num b e r of c o ns e q ue nc es and t he I n de p e nde n c e Axi o m. ]
T h ese p r o p erties can b e s p e lled o ut as fo llo w s . F irst, r ecall t h e situ ation c on sid e red b y the I nd ep end e n c e A xiom : w e t oss a coin ; i f i t c om es h e ad , t h e decision m a k e r f aces p or q d e p e nd in g h is c h o i ce, a n d i f i t c om es tail, he faces r . T h e fi rst p rop e rt y s tates th at it do es no t m atter w h e th er he faces t he sam e lo tter y i n c ase o f t ail o r t w o d i ff er en t l o t t e r i e s t h a t h e i s i n d i ff eren t t o. F o r a n e xp l a na tion of the seco nd pr op ert y n o te tha t in the s i t ua tion co nsid ered b y th e I n d ep en dence A xiom , a ccord i ng to the a xiom , t h e d ecision m a k e r w ou ld b e ind i ff er en t b et w e en th e t w o co m p ou nd ing l o tter i es if h e w e re ind i ff er en t b et w een p an d q . T hi s c o rres p onds t o ( 2 . 2 ) f o r a ∈ [0 , 1] . T he p r o p ert y states m o re g e n e ra l l y t h a t t he statem en t r em a i ns tru e ev en if a is n o t i n [0 , 1] , i n w h i c h ca se t h e p robl em c o ul dn’ t b e re pre s e n t e d as a c ho i c e b et w e e n t w o c o m p o undi ng l o t t e r i e s .
2 . 3. EXPECTED U TI LI TY M A XI MI Z A TI O N – C HARA CTERI ZA TI ON
15
T h e t hird p r o p ert y p r ob a b ilit y i s a m o no to nicit y p r ob a b ilit y . It sim p ly sta t es t h a t w h en a d e c ision m a k er fa ces a s itu a tion in w h ic h h e c a n e n d u p a b e tter l o ttery p or w o r s e lott ery q , t h e n h e w ou ld p r efer h i g h e r pro b ab ilities o f p to lo w e r o n es. F i na ll y , t h e last pro b a b ilit y s tat e s t h a t t her e ar e b e s t a nd w o rst c onsequences ( b y transi ti vi t y and co m p leten ess) a n d th ey a r e a lso b est a n d w orst lo tteries ( b y m o n o ton i cit y ). U s ing t hese p r op erties, o n e c an ea sil y p r o v e t h e m a in result in th i s lectu re:
The o rem 4 A r e l a t i o n º on P c a n b e r epr e sente d by a v on N e um ann - M o r gen stern u t ility f u n ctio n u : C → R a s in (V N M ) i f a n d o n ly if º satis fi es A x i o m s 2, 3, and 4 . Mo r e o v e r , u and u ˜ r e pr e s ent t he s a me pr e f er enc e r e l a t i on i f and o nl y i f u ˜ = au + b fo r so m e a > 0 an d b ∈ R .
B W
Pr o o f . Sin c e w e k no w a lre a d y tha t rep r ese n t atio n i n ( V N M ) i m p lies A x i o m s 2 , 3 , a nd 4, I w il l o nly p ro v e the c o n v e r se. A s i n (2 . 4 ), let c B , c W ∈ C be s u c h t h a t c B º p º c W fo r
B W
ev ery p ∈ P . I f c ∼ c , t h e n b y t ran s itiv it y , th e d ec ision m a k er is ind i ff eren t b et w een
e v e r yt hi ng , a nd he nc e u ( c ) ≡ 0 for a l l c sa ti s fi es the r ep resen tation . A ssum e c  c ,
W B 0
an d d e fi ne φ : [ 0 , 1] → P by φ ( t ) = tc + ( 1 − t ) c . B y ( 2.3), f or an y t, t ∈ [0 , 1] ,
φ ( t ) º φ ( t 0 ) ⇐⇒ t ≥ t. (2 . 5 )
T h en , L em m a 1 o f t h e pr eviou s l e ctu r e i m p li es tha t fo r e v e r y p ∈ P , t h e re exists a uni q ue U ( p ) ∈ [0 , 1] suc h that
p ∼ φ ( U ( p )) . (2 . 6 )
F i rst o b serv e th a t U in deed rep r esen t s º in th e o rd in al se nse : fo r a n y p, q ∈ P ,
p º q ⇐⇒
φ ( U ( p )) º φ ( U ( q )) ⇐⇒
U ( p ) ≥ U ( q ) .
[H ere, th e fi rs t ⇐⇒ is b y (2 . 2 ) a n d (2.6), an d t he secon d ⇐⇒ is b y (2.5 ).] I n o rd er
to sh o w th at U ha s t he s p ec i fi c s tru c tu re i n (V N M ), it su ffi ces to sho w tha t U is line a r. That i s , f or an y a ∈ R an d a n y p, q ∈ P wi t h ap + ( 1 − a ) q ∈ P ,
U ( ap + ( 1 − a ) q ) = aU ( p )+ ( 1 − a ) U ( q ) . ( 2. 7)
But , s i nc e p ∼ φ ( U ( p )) and q ∼ φ ( U ( q )) ,
ap + ( 1 − a ) q ∼ aφ ( U ( p )) + ( 1 − a ) φ ( U ( q ))
= φ ( aU ( p )+ ( 1 − a ) U ( q )) ,
16
CHAP TE R 2 . D ECI S I O N M AKI N G U NDE R RI S K
pro v i n g ( 2 . 7) b y de fi n i tio n (2.6) o f U . [ H e r e , t h e i n d i ff e r e n c e is b y ( 2 .1 ) a n d t h e e q u a l it y is b y d e fi nition of φ .]
B y the l ast s ta tem e n t in T h eo rem 4 , t h e rep r esen tatio n i s “u n i qu e u p t o a ffi ne t r a n s - f o rmat i o ns ”. That i s , a de c i s i on m a k e r’ s p ref e rences do not c hange w hen w e c hange h i s v o n N e u m a n n-M o rg en stern ( V N M ) u tilit y fu n ction b y m u ltiply in g i t w ith a p o sitiv e n u m b er, o r a d d in g a constan t to it, b u t th ey d o c h an ge w h en w e tran sform i t t h r ou gh a n on -linear t ransfor m ati o n . In th at sense, (V N M ) r ep resen t ati o n i s “ card ina l ”. R e call
th at, i n o rd ina l rep r esen tatio n , t he p r eferen ces d o n ot c h an ge ev en if the t ran s fo rm a t ion is n o n - linea r, so lon g as it is inc r eas i n g . F o r in sta n ce , u n d e r c erta in t y , v = √ u and
u rep r esen t t h e sa m e preference rel a tion , w hile ( w he n t h e r e is un ce rtain t y ) th e V N M u t ilit y f un ctio n v = √ u represen t s a v e ry di ff eren t set of pr eferen ces on th e l otteries
th an th ose a re r e pr esen ted b y u .
2. 4 I ndi ff erenc e Set s unde r I ndep endenc e A xi o m
In the s equel , I w i l l expl ore t he structure i m p osed b y the I ndep endence A xi om on the ind i ff er en ce sets i n m o r e d etail, expla i nin g the l og ic of th e r ep resen tatio n . R ecall f ro m th e p reviou s l ectur e tha t A x iom s 2 a n d 3 i m p l y th at th e i n d i ff eren ce sets a re closed. The I nde p ende nc e A xi om ha s t w o f u rt he r i m p l i c at i o ns o n t h e i ndi ff er ence sets:
1. T h e i n d i ff eren ce sets on th e l otteries a re str aigh t l in es (i.e. h y p erp l an es).
2. T h e i n d i ff e r en ce s e ts, w h i c h are s traig h t line s , a re p a r a llel t o e ac h o th er.
T o ill u s tra t e t h ese facts, co nsid er th ree p rizes z 0 , z 1 , a n d z 2 , w h e r e z 2 Â z 1 Â z 0 . A l o t t e r y p ca n b e d ep icted o n a p l an e b y t a k i n g p ( z 1 ) as the fi rst c o o rdinate ( on the hori z o n t al axi s ) , and p ( z 2 ) as th e s eco nd co o r d i n a te (o n t he v e r t ical a x is). p ( z 0 ) is 1 − p ( z 1 ) − p ( z 2 ) . [ See F ig ur e 2 .4 fo r t h e illu stra t ion . ] G iv e n a n y t w o lo tte ries p
an d q , t h e con v ex co m b in atio ns ap + ( 1 − a ) q wi t h a ∈ [0 , 1] fo rm th e line s e g m e n t co nn ecting p to q . N o w , t a k i n g r = q , w e c an deduce from (2.2) t hat, if p ∼ q , t h e n ap + ( 1 − a ) q ∼ aq + ( 1 − a ) q = q fo r e a c h a ∈ [0 , 1] . T h a t i s , t h e l i n e s e g m e n t
co nn ecting p to q is an in di ff eren ce cu rv e. M o reo v er, i f t he lines l an d l 0 a r e p a r allel,
th en α/ β = | q 0 | / | q | , w h e r e | q | an d | q 0 | are t he di st a n c e s of q and q 0 to the o ri gi n, resp ecti v el y . H e n ce, takin g a = α/β , w e c o m put e t hat p 0 = ap + ( 1 − a ) z 0 an d q 0 =
2 . 4 . I N DI FF ERE N CE S E TS UNDE R I N DE PE NDE N CE AXI OM
17
p ( z 2 )
6
1 z 2
@
@
@
@
β H p H @
H H l @
α p 0 H @
H
H H
H l 0
H H @
H H @ q
H
@ H
H H ¡ @
H H ¡ @
¡ q 0 H H @
H
¡ H @
H
¡ H @
¡ H @
¡ @
¡ @
z 1
¡ @
¡ @ - p ( z 1 )
z 0 1
Figure 2.4: In di ff eren ce cur v es o n the s pa ce o f lotteries
aq + ( 1 − a ) z 0 . T heref o re, b y ( 2.2), i f l is an ind i ff erence curv e, l 0 is a l so an ind i ff erence cu rv e, sho w in g t h a t t he ind i ff erence curv es are p aral l e l .
T h ese t w o p r o p e rties i n t h e sp ecial c ase a llo w s on e t o c on stru ct a u til i t y fu n ction th at represen ts th e p referen c es i n th e sen se of (V N M ) a s f o l l o w s . L in e l can b e d e fi ne d by e q u a t i o n u 1 p ( z 1 ) + u 2 p ( z 2 ) = c fo r s o m e u 1 , u 2 ,c ∈ R . S i n c e l 0 is p a ra lle l to l , th en l 0 can a lso b e d e fi ne d b y e quat i o n u 1 p ( z 1 ) + u 2 p ( z 2 ) = c 0 for s om e c 0 . S i n c e t h e ind i ff er en ce cu rv es ar e d e fi ned b y e qual it y u 1 p ( z 1 )+ u 2 p ( z 2 ) = c fo r v a r io u s v a lu es o f c , th e p referen c es are r ep resen ted b y
U ( p ) = 0 + u 1 p ( z 1 )+ u 2 p ( z 2 )
≡ u ( z 0 ) p ( z 0 )+ u ( z 1 ) p ( z 1 )+ u ( z 2 ) p ( z 2 ) ,
18
CHAP TE R 2 . D ECI S I O N M AKI N G U NDE R RI S K
whe r e |
||
u ( z 0 ) |
= |
0 , |
u ( z 1 ) |
= |
u 1 , |
u ( z 2 ) |
= |
u 2 , |
givin g th e d esired r epresen ta tion .
I w i l l n o w e s t abl i s h t he a b o v e t w o f a ct s , name l y t h e i ndi ff eren ce sets a r e h y p e rp lan e s an d p ara l l e l t o e a c h o th er, m o r e g en era l l y . U sing th ese fa cts, I w ill d escrib e a general w a y t o c o n st ruc t th e V N M utilit y f un ct io n u – s im ila r to t h e e x a m p le a b o v e. I w ill also sho w th at u ˜ mu s t b e a n a ffi ne tran sf orm a tion of u , i n o rd er to represen t t h e sam e p r eferen ce rel a tion . T h o se w h o a re no t i n t erested m a y s kip i t a n d follo w t he su bsequ e n t lectures.
I w ill fi rs t s ho w t ha t t he i ndi ff erence set I ( p ) i s a h yp erpl ane. That i s ,
I ( p ) = ( p + V ( p )) ∩ P
f o r s o m e l i n e a r s u b s p a c e V ( p ) of R | C | . N o t e t h a t V ( p ) i s a l i n ea r s u b sp ace m ean s tha t ax + by ∈ V ( p ) for a n y x, y ∈ V ( p ) an d a n y real n u m b ers a an d b . F or sim p lic i t y , I w i ll assum e th at p is in th e r ela t iv e i n t e r ior o f p .
P r op os i t i o n 1 U n der A x i om s 2 an d 4 , f or every p in th e r ela tive i n t er io r o f P , t h e in d i ff er en c e set I ( p ) is a h yp erp l an e.
Pr o o f . De fi ne
V ( p ) = { a ( q − p ) | q ∈ I ( p ) ,a ∈ R } .
To s h o w t h a t V ( p ) is a line a r s u b sp ac e, ta k e a n y x = a ( q − p ) ,y = b ( r − p ) ∈ V ( p ) , whe r e a an d b are r eal n u m b e rs an d q ∼ p ∼ r . F or arb i trary α, β ∈ R , I s h o w t h a t z = αx + βy ∈ V ( p ) . N o w , s i n c e q, r ∈ P an d p is in th e r elativ e i n t e r ior o f P , t h e r e
exists λ / = 0 su c h th at s = λαaq + λβ br + ( 1 − λα a − λβ b ) p ∈ P . S i n c e z = λ − 1 ( s − p ) , it su ffi c e s t o s ho w t ha t s ∈ I ( p ) . I ndee d,
s = λαaq + λβ br + ( 1 − λα a − λβ b ) p
~ λαap + λβ br + ( 1 − λα a − λβ b ) p = λβ br + ( 1 − λβ b ) p
~ λβ bp + ( 1 − λβ b ) p = p,
2 . 4 . I N DI FF ERE N CE S E TS UNDE R I N DE PE NDE N CE AXI OM
19
whe r e b o t h i n d i ff er en ces a r e b y ( 2 . 2).
To s h o w t h a t ( p + V ( p )) ∩ P = I ( p ) , i t s u ffi c e s t o s h o w t h a t f o r a n y a ( q − p ) ∈ V ( p ) wi t h a ( q − p ) + p ∈ P , a ( q − p ) + p ∼ p . B u t s i n c e q ∈ I ( p ) and a ( q − p ) + p = aq + ( 1 − a ) p , t h i s i s t r u e b y ( 2 . 2 ) .
M o reo v er, t he h y p e rpl a nes I ( p ) and I ( q ) are p a r allel:
P r op os i t i o n 2 Fo r a n y p and q in th e i n t er io r o f P , t he i n di ff er enc e sets I ( p ) an d I ( q ) ar e p ar al lel h yp erplanes. T hat i s, I ( p ) = ( p + V ) ∩ P an d I ( q ) = ( q + V ) ∩ P fo r so m e l i n e a r sub s p a c e V .
Pr o o f . It su ffi c e s t o s ho w t ha t V ( p ) = V ( q ) in th e p revio u s p r o p o sition an d i ts p r o o f. T h at i s , f or an y a ( p 0 − p ) wi t h p 0 ∈ I ( p ) and a ∈ R , t h e r e e x i s t b ∈ R an d q 0 ∈ I ( q ) su c h th at a ( p 0 − p ) = b ( q 0 − q ) . T h e l a st equ a lit y c a n b e w r i t ten a s q 0 = q + ( a/ b ) ( p 0 − p ) . Si nc e q is in th e i n t erio r a n d p, p 0 ∈ P , t h e r e e x i s t s b su c h th at q 0 ∈ P and a/ b < 0 . L e t
1 − a/b
1 − a/b
r = − a/b p + 1 q ∈ P . T he n, q = a/bp + ( 1 − a/b ) r and q 0 = a/bp 0 + ( 1 − a/ b ) r .
Si nc e p ∼ p 0 , t h i s i m p l i e s b y ( 2 . 2 ) t h a t q ∼ q 0 .
N o w , ex clud ing t h e triv ial c ase o f c B ∼ c W , a ssum e t hat c B Â c W . T he n, f o r a n y
in terio r p , w e m u s t h a v e c B  p  c W . I n t h a t c a se, to gether w i th th e l ast p ro p o sitio n ,
Le m m a 1 o f t he pre v i o us l e c t ure i mpl i es t h a t t h e d i m ens i on o f di m V ≥ dim P − 1 . F o r o therw i se, o n e c ou ld co nn ect c B to c W w i tho u t i n t ersecti n g I ( p ) . M or eo v e r, since c B Â c W , I ( p ) = / P . H ence, dim V = d i m P − 1 = | C | − 2 . I n t ha t c a se, th ere e xists u ∈ R C \ { 0 } suc h tha t
V = © x ∈ R C | u · x = 0 , 1 · x = 0 ª , (2 . 8 ) whe r e 1 · x = P c x c = 0 i s t h e c o ndi t i o n i m pl i e d b y t he f a ct t h a t x = a ( q − p ) fo r s o m e p r ob ab ili t y v ectors p an d q . L e t U ( V ) b e the set o f u ∈ R C \ { 0 } tha t sa tisfy ( 2.8). S ince di m V = d i m P − 1 , U ( V ) is o n e-d i m e nsio na l: if u, u 0 ∈ U ( V ) , t h e n u 0 = au for s om e a ∈ R . B y d e fi ni t i on of V ,
p ∼ q ⇐⇒ u · ( p − q ) = 0 .
H e n ce, U ( V ) is th e s et o f utilit y f u n c tion s t ha t r e s ult i n t he ind i ff er ence sets ∼ . T o m a k e s u re that t h e i ndi ff eren ce sets are r a n k e d c o rrectl y , o n e a l so im p o ses u c B > u c W . T h i s
i s a n o t he r w a y t o c o ns t r uc t t he s e t of v o n- N e um a n n a nd M o rg e n s t ern u t i l i t y f unc t i o n s an d p r o v e th at the r ep resen t ation i s u niqu e o nly u p t o a ffi n e tra n sform a tio n s.
M IT OpenCourseWare http://ocw.mit.edu
1 4.123 Microeconomic Theory III
Spring 2010
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .