Centipede Game

100

100

Lecture 9

Reputation Formation

14.123 Microeconomic Theory III Muha met Yildiz

1

2

1

1

2

1

2

1

0

2

98

97

99

98

1

3

2

98

100

99

101

Centipede Game w ith doubt

{.999}

197

5

4

3

2

1

= n

100

100

{.001}

5

3

1

0

100

-1

1

0

3

0 -1

99 98

0 -1

100 99

0

101

1

2

2

1

2

1

2

1

0

96

98

97

99

98

1

3

99

98

100

99

101

1

2

2

1

2

1

2

Facts about SE in Centipede

2 always goes across with positive probability.

Ever y information set of 2 is reached

If 2 strictly prefers to go across at n , then

she must strictly prefer t o go across at n +2,

her posterio r at n is her prior.

For an y n > 2, 1 goes across with positi v e probability. If 1 goes across w/p 1 at n , then 2’s posterior at n -1 is h e r prior.

If 2 is mixing at n , th en

(1- n ) p n -1 = 1/2

n = n -2 /2

n n -2 /2

Centipede Game w ith doubt

{.999}

197

5

4

3

2

1

= n

100

100

1

2

5 2

1 3 2 1

1

2

{.001}

0

100

-1

1

0

3

0 -1

99 98

0 -1

100 99

0

101

1

2

2

1

2

1

2

1

0

96

98

97

99

98

1

3

99

98

100

99

101

0. 5

0. 45

0. 4

0. 35

0. 3

0. 25

G o A c r o ss

0. 2

0. 15

0. 1

0. 05

0

0

20

40

60

80

Mi x

100

M IT OpenCourseWare http://ocw.mit.edu

1 4.123 Microeconomic Theory III

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .