Centipede Game
100
100
Lecture 9
Reputation Formation
14.123 Microeconomic Theory III Muha met Yildiz
1 |
2 |
1 |
1 |
2 |
1 |
2 |
|
… |
|||||||
1 |
0 |
2 |
98 |
97 |
99 |
98 |
|
1 |
3 |
2 |
98 |
100 |
99 |
101 |
Centipede Game – w ith doubt
{.999}
197
5
4
3
2
1
= n
100
100
{.001}
5
3
1
0
100
…
-1
1
0
3
0 -1
99 98
0 -1
100 99
0
101
1 |
2 |
… |
2 |
1 |
2 |
1 |
2 |
|||||
1 |
0 |
96 |
98 |
97 |
99 |
98 |
||||||
1 |
3 |
99 |
98 |
100 |
99 |
101 |
||||||
1 |
2 |
2 |
1 |
2 |
1 |
2 |
Facts about SE in Centipede
2 always goes across with positive probability.
Ever y information set of 2 is reached
If 2 strictly prefers to go across at n , then
she must strictly prefer t o go across at n +2,
her posterio r at n is her prior.
For an y n > 2, 1 goes across with positi v e probability. If 1 goes across w/p 1 at n , then 2’s posterior at n -1 is h e r prior.
If 2 is mixing at n , th en
(1- n ) p n -1 = 1/2
n = n -2 /2
n n -2 /2
Centipede Game – w ith doubt
{.999}
197
5
4
3
2
1
= n
100
100
1
2
5 2
1 3 2 1
1
2
{.001}
0
100
…
-1
1
0
3
0 -1
99 98
0 -1
100 99
0
101
1 |
2 |
2 |
1 |
2 |
1 |
2 |
|
… |
|||||||
1 |
0 |
96 |
98 |
97 |
99 |
98 |
|
1 |
3 |
99 |
98 |
100 |
99 |
101 |
0. 5
0. 45
0. 4
0. 35
0. 3
0. 25
G o A c r o ss
0. 2
0. 15
0. 1
0. 05
0
0
20
40
60
80
Mi x
100
M IT OpenCourseWare http://ocw.mit.edu
1 4.123 Microeconomic Theory III
Spring 2010
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .