Attitudes Towards Risk
14.123 Microeconomic Theory III Muha met Yildiz
Model
C = R = w eal th l e vel
Lottery = cdf F (pdf f )
Utility function u : R → R
U ( F ) ≡ E F ( u ) ≡ ∫ u ( x )d F ( x )
E F ( x ) ≡ ∫ x d F ( x )
Attitudes Towards Risk
DM is
risk aver se if E F ( u ) ≤ u ( E F ( x )) ( F )
strictly risk averse if E F ( u )< u ( E F ( x )) ( “risky” F )
risk neutral if E F ( u )= u ( E F ( x )) ( F )
risk seeking if E F ( u ) ≥ u ( E F ( x )) ( F ) DM is
risk aver se if u is concave
strictly risk averse if u is strictl y conca v e
risk neutral if u is linear
risk seeking if u is convex
Certainty Equivalence
CE ( F ) = u ⁻ ¹( U ( F ))= u ⁻ ¹( E F ( u ))
DM is
risk av erse if CE ( F ) ≤ E F ( x ) for all F ;
risk neutral if CE ( F ) = E F ( x ) for all F ;
risk seeking if CE ( F ) ≥ E F ( x ) for all F .
Take DM1 and DM2 with u 1 and u 2 .
DM1 is more risk averse than DM2
u 1 is mo re concave t han u 2 ,
u 1 = φ ◦ u 2 for some c oncave func tion φ ,
CE 1 ( F ) ≡ u 1 ⁻ ¹( E F ( u 1 )) ≤ u 2 ⁻ ¹( E F ( u 2 )) ≡ CE 2 ( F )
Absolute Risk Aversion
absolute risk aversion:
r A ( x ) = - u ′′ ( x )/ u ′ ( x )
constant absolute risk aversion (CARA)
u ( x ) =- e - α x
If x ~ N ( μ , σ ²) , CE ( F ) = μ - ασ ²/2
Fact: More risk aversion higher absolute risk aversion everywhere
Fact: Decreasing absolute risk aversion (DARA)
y >0 , u 2 with u 2 ( x ) ≡ u ( x+y ) is less risk averse
Relative risk aversion:
relative risk aversion:
r R ( x ) = - xu ′′ ( x )/ u ′ ( x )
constant relative risk aversion (CRRA)
u ( x )=- x 1- ρ /(1- ρ ),
When ρ = 1 , u ( x ) = log( x ).
Fact: Decreasing relative risk aversion (DRRA)
t >1 , u 2 with u 2 ( x ) ≡ u ( tx ) is less risk averse
Application: Insurance
wealth w and a loss of $1 with probability p .
Insuran c e: pays $1 i n case of loss co sts q ;
DM buys units of insurance.
Fa ct : If p = q (fair premium), then = 1 (full insurance).
■ Ex pecte d we alt h w – p fo r a ll .
Fa ct : If DM1 bu ys full insuran c e, a mor e risk aver se DM2 also buys full insurance.
CE 2 ( ) ≤ CE 1 ( ) ≤ CE 1 ( ) = CE 2 ( ).
Application: Optimal Portfolio Choice
With initial wealth w , invest α [0, w ] in a risky a sse t that pays a return z per each $ invested; z has cdf F on [0, ∞ ) .
U ( α ) = ∫ 0 u ( w + α z - α ) d F ( z ) ; c o nc av e
It is optimal to invest α > 0 iff E[ z ] > 1 .
■ U ’( 0) = ∫ 0 u ’( w )( z -1 ) d F ( z ) = u ’( w )( E[ z ]-1) .
If agent with utility u 1 optimally inve sts α 1 , then an agent with more risk aver se u 2 (same w ) optimally inve sts α 2 ≤ α 1 .
DARA optimal α i n crea se s in w . CARA optimal α i s constan t in w .
CRRA (DRRA) optimal α /w i s constant (increasing)
∞
∞
Optimal Portfolio Choice – P roof
u 2 = g ( u 1 ) ; g is c o nc av e; g ’( u 1 ( w )) = 1 .
U i ( α ) ≡ ∫ u i ( w + α ( z -1))( z -1) d F ( z )
U 2 ’( α )- U 1 ’( α ) = ∫ [ u 2 ( w + α ( z -1))- u 1 ( w + α ( z -1))]( z -1)d F ( z )
≤ 0.
g ’( u 1 ( w + α 1 z - α 1 )) < g ’( u 1 ( w )) = 1 z > 1 .
u 2 ( w + α ( z -1) ) < u 1 ( w + α ( z -1)) z > 1 .
α 2 ≤ α 1
Stochastic Dominance
Goal: Compar e lotteries with mini mal assumptions on preferences
Assume that the suppor t o f al l payof f distribution s is bounded . Support = [ a , b ].
Two main concepts:
First - o r de r Stoch a st ic Do min a n c e: A pay off d i stributio n is pref erred by all m onotonic Expected Utilit y pr ef er e n ce s .
Se co nd-orde r Sto c h a s tic D o mina nce : A pa yo ff dist ribut io n is pr ef er re d by all r i sk a v erse E U pr ef er e n ce s .
FSD
Proof:
“If:” for F ( x* ) > G ( x* ), d e fine u = 1 { x > x *} .
“Only if”: As sume F and G ar e stric t ly inc r ea sin g a n d con t in uou s on [ a,b ] .
Defi n e y ( x ) = F -1 ( G (x) ) ; y ( x ) ≥ x for all x
∫ u ( y )d F ( y ) = ∫ u ( y ( x ) )d F ( y ( x ) ) = ∫ u ( y ( x ) )d G ( x ) ≥ ∫ u ( x )d G ( x )
MPR and MLR Stochastic Orders
|
DEF : F first-order stocha stically domi nates G F ( x ) ≤ G ( x ) for all x . |
|
THM : F fi rst-order sto c ha sti c a l l y domin a t e s G for ev ery we akly incr e a sing u: → , ∫ u ( x )d F ( x ) ≥ ∫ u ( x )d G ( x ) . |
|
DEF : F dominates G in the Monotone Probability Ratio (MPR) sense if k ( x ) ≡ G ( x )/ F ( x ) is weakly decreasing in x . |
|
TH M : MPR dominance implies FSD. |
|
DEF : F dominates G in the Monotone Likelihood Ratio (MLR) sense if ℓ ( x ) ≡ G ’( x )/ F ’( x ) is weakly decreasing. |
|
TH M : MLR dominance imp lies MPR dominance. |
SSD
Assume : F and G has the same mean
DEF : F second-orde r stochasticall y domi n ates G for ever y non-decreasi n g concave u , ∫ u ( x )d F ( x ) ≥ ∫ u ( x )d G ( x ) .
DEF : G is a mean-pr eser vin g spread of F y = x + ε for so me x ~ F , y ~ G , and ε with E [ ε |x ] = 0 .
TH M : The following are equivalent:
F sec o n d - o r d er st oc has tically d o m in ates G .
G is a me a n - p r e s e rv in g s p r e ad of F .
∀ t ≥ 0 , ∫ 0 G ( x )d x ≥ ∫ 0 F ( x )d x .
t
t
SSD
Example: G (dotted) is a mean-preserving spread of F (solid).
1
G
F
0
b
x
M IT OpenCourseWare http://ocw.mit.edu
1 4.123 Microeconomic Theory III
Spring 2010
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .