Attitudes Towards Risk

14.123 Microeconomic Theory III Muha met Yildiz

Model

C = R = w eal th l e vel

Lottery = cdf F (pdf f )

Utility function u : R R

U ( F ) E F ( u ) u ( x )d F ( x )

E F ( x ) x d F ( x )

Attitudes Towards Risk

DM is

risk aver se if E F ( u ) u ( E F ( x )) ( F )

strictly risk averse if E F ( u )< u ( E F ( x )) ( “risky” F )

risk neutral if E F ( u )= u ( E F ( x )) ( F )

risk seeking if E F ( u ) u ( E F ( x )) ( F ) DM is

risk aver se if u is concave

strictly risk averse if u is strictl y conca v e

risk neutral if u is linear

risk seeking if u is convex

Certainty Equivalence

CE ( F ) = u ¹( U ( F ))= u ¹( E F ( u ))

DM is

risk av erse if CE ( F ) E F ( x ) for all F ;

risk neutral if CE ( F ) = E F ( x ) for all F ;

risk seeking if CE ( F ) E F ( x ) for all F .

Take DM1 and DM2 with u 1 and u 2 .

DM1 is more risk averse than DM2

u 1 is mo re concave t han u 2 ,

u 1 = φ u 2 for some c oncave func tion φ ,

CE 1 ( F ) u 1 ¹( E F ( u 1 )) u 2 ¹( E F ( u 2 )) CE 2 ( F )

Absolute Risk Aversion

absolute risk aversion:

r A ( x ) = - u ′′ ( x )/ u ( x )

constant absolute risk aversion (CARA)

u ( x ) =- e - α x

If x ~ N ( μ , σ ²) , CE ( F ) = μ - ασ ²/2

Fact: More risk aversion higher absolute risk aversion everywhere

Fact: Decreasing absolute risk aversion (DARA)

y >0 , u 2 with u 2 ( x ) u ( x+y ) is less risk averse

Relative risk aversion:

relative risk aversion:

r R ( x ) = - xu ′′ ( x )/ u ( x )

constant relative risk aversion (CRRA)

u ( x )=- x 1- ρ /(1- ρ ),

When ρ = 1 , u ( x ) = log( x ).

Fact: Decreasing relative risk aversion (DRRA)

t >1 , u 2 with u 2 ( x ) u ( tx ) is less risk averse

Application: Insurance

wealth w and a loss of $1 with probability p .

Insuran c e: pays $1 i n case of loss co sts q ;

DM buys units of insurance.

Fa ct : If p = q (fair premium), then = 1 (full insurance).

Ex pecte d we alt h w p fo r a ll .

Fa ct : If DM1 bu ys full insuran c e, a mor e risk aver se DM2 also buys full insurance.

CE 2 ( ) CE 1 ( ) CE 1 ( ) = CE 2 ( ).

Application: Optimal Portfolio Choice

With initial wealth w , invest α [0, w ] in a risky a sse t that pays a return z per each $ invested; z has cdf F on [0, ) .

U ( α ) = 0 u ( w + α z - α ) d F ( z ) ; c o nc av e

It is optimal to invest α > 0 iff E[ z ] > 1 .

U ’( 0) = 0 u ’( w )( z -1 ) d F ( z ) = u ’( w )( E[ z ]-1) .

If agent with utility u 1 optimally inve sts α 1 , then an agent with more risk aver se u 2 (same w ) optimally inve sts α 2 α 1 .

DARA optimal α i n crea se s in w . CARA optimal α i s constan t in w .

CRRA (DRRA) optimal α /w i s constant (increasing)

Optimal Portfolio Choice P roof

u 2 = g ( u 1 ) ; g is c o nc av e; g ’( u 1 ( w )) = 1 .

U i ( α ) u i ( w + α ( z -1))( z -1) d F ( z )

U 2 ’( α )- U 1 ’( α ) = [ u 2 ( w + α ( z -1))- u 1 ( w + α ( z -1))]( z -1)d F ( z )

0.

g ’( u 1 ( w + α 1 z - α 1 )) < g ’( u 1 ( w )) = 1 z > 1 .

u 2 ( w + α ( z -1) ) < u 1 ( w + α ( z -1)) z > 1 .

α 2 α 1

Stochastic Dominance

Goal: Compar e lotteries with mini mal assumptions on preferences

Assume that the suppor t o f al l payof f distribution s is bounded . Support = [ a , b ].

Two main concepts:

First - o r de r Stoch a st ic Do min a n c e: A pay off d i stributio n is pref erred by all m onotonic Expected Utilit y pr ef er e n ce s .

Se co nd-orde r Sto c h a s tic D o mina nce : A pa yo ff dist ribut io n is pr ef er re d by all r i sk a v erse E U pr ef er e n ce s .

FSD

Proof:

“If:” for F ( x* ) > G ( x* ), d e fine u = 1 { x > x *} .

“Only if”: As sume F and G ar e stric t ly inc r ea sin g a n d con t in uou s on [ a,b ] .

Defi n e y ( x ) = F -1 ( G (x) ) ; y ( x ) x for all x

u ( y )d F ( y ) = u ( y ( x ) )d F ( y ( x ) ) = u ( y ( x ) )d G ( x ) u ( x )d G ( x )

MPR and MLR Stochastic Orders

DEF : F first-order stocha stically domi nates G

F ( x ) G ( x ) for all x .

THM : F fi rst-order sto c ha sti c a l l y domin a t e s G for ev ery we akly incr e a sing u: , u ( x )d F ( x ) u ( x )d G ( x ) .

DEF : F dominates G in the Monotone Probability Ratio (MPR) sense if k ( x ) G ( x )/ F ( x ) is weakly decreasing in x .

TH M : MPR dominance implies FSD.

DEF : F dominates G in the Monotone Likelihood Ratio (MLR) sense if ( x ) G ’( x )/ F ’( x ) is weakly decreasing.

TH M : MLR dominance imp lies MPR dominance.

SSD

Assume : F and G has the same mean

DEF : F second-orde r stochasticall y domi n ates G for ever y non-decreasi n g concave u , u ( x )d F ( x ) u ( x )d G ( x ) .

DEF : G is a mean-pr eser vin g spread of F y = x + ε for so me x ~ F , y ~ G , and ε with E [ ε |x ] = 0 .

TH M : The following are equivalent:

F sec o n d - o r d er st oc has tically d o m in ates G .

G is a me a n - p r e s e rv in g s p r e ad of F .

t 0 , 0 G ( x )d x 0 F ( x )d x .

t

t

SSD

Example: G (dotted) is a mean-preserving spread of F (solid).

1

G

F

0

b

x

M IT OpenCourseWare http://ocw.mit.edu

1 4.123 Microeconomic Theory III

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .