Attitudes Towards Risk
14.123 Microeconomic Theory III Muha met Yildiz
Model
X = R = w eal th l e vel
Lottery = cdf F (pdf f )
Utility function u : R → R
U ( F ) ≡ E F ( u ) ≡ ∫ u ( x )d F ( x )
E F ( x ) ≡ ∫ x d F ( x )
Attitudes Towards Risk
DM is
risk aver se if E F ( u ) ≤ u ( E F ( x )) ( F )
strictly risk averse if E F ( u )< u ( E F ( x )) ( “risky” F )
risk neutral if E F ( u )= u ( E F ( x )) ( F )
risk seeking if E F ( u ) ≥ u ( E F ( x )) ( F ) DM is
risk aver se if u is concave
strictly risk averse if u is strictl y conca v e
risk neutral if u is linear
risk seeking if u is convex
Certainty Equivalence
CE ( F ) = u ⁻ ¹( U ( F ))= u ⁻ ¹( E F ( u ))
DM is
risk av erse if CE ( F ) ≤ E F ( x ) for all F ;
risk neutral if CE ( F ) = E F ( x ) for all F ;
risk seeking if CE ( F ) ≥ E F ( x ) for all F .
Take DM1 and DM2 with u 1 and u 2.
DM1 is more risk averse than DM2
u 1 is mo re concave t han u 2 ,
u 1 = φ ◦ u 2 for so me concave function φ ,
CE 1 ( F ) ≡ u 1 ⁻ ¹( E F ( u 1 )) ≤ u 2 ⁻ ¹( E F ( u 2 )) ≡ CE 2 ( F )
Measures of Risk Aversion
absolute ri sk aver sion:
r A ( x ) = - u ′′ ( x )/ u ′ ( x )
constant absolute risk aver sion (CARA)
u ( x ) =- e - α x
If x ~ N( μ , σ ²), CE ( F ) = μ - ασ ²/2
relative risk aversion:
r R ( x ) = - xu ′′ ( x )/ u ′ ( x )
constant relative risk aversion (CRRA)
u ( x )= - x 1- ρ /(1- ρ ),
When ρ =1, u ( x ) = l og( x ).
M IT OpenCourseWare http://ocw.mit.edu
1 4.123 Microeconomic Theory III
Spring 2010
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .