L u i z L e a l

O a k R i d g e N a t i o n a l L a b o r a t o r y

L e c t u r e s

P r e s e n t e d

a t t h e N u c l e a r

E n g i n e e r i n g

D e p a r t m e n t

o f t h e

M a s s a c h u s e t t s I n s t i t u t e o f T e c h n o l o g y ( M I T )

Courtesy of Luiz Leal, Oak Ridge National Laboratory. Used with permission.

T h e r m a l N e u t r o n S c a t t e r i n g

K e r n e l D e v e l o p m e n t

T h e

p r o c e d u r e

c o n s i s t s

o f f i n d i n g t h e

a m p l i t u d e

o f t h e

s c a t t e r i n g w a v e f u n c t i o n

t h a t

l e a d s t o t h e d i f f e r e n t i a l s c a t t e r i n g c r o s s s e c t i o n . I n d o i n g s o , a f e w t h i n g s w i l l b e a s s u m e d :

( 1 ) F i r s t B o r n a p p r o x i m a t i o n ;

( 2 ) F e r m i P s e u d o p o t e n t i a l ;

( 3 ) T i m e d e p e n d e n t S c h r ö d i n g e r e q u a t i o n

( T D S E )

The

f i r s t

t w o

a s s u m p t i o n s

h a v e

a l r e a d y

b e e n

di s c u s s e d . W h y a s s u m e t h e T D S E i s e x p l a i n e d a s

f o l l o w s : t h e e n e r g y d e p e n d e n c y ( e x p l i c i t l y ) i n

t h e

S c h r ö d i n g e r

e q u a t i o n

i m p l i e s

t h a t

t h e

e i g e n s t a t e s

o f t h e s c a t t e r i n g

s y s t e m a r e

k n o w n ,

i . e . ,

i n i t i a l s

a n d f i n a l

s t a t e s .

U s u a l l y

t h e y

a r e

n o t

k n o w n

a n d

e v e n i f t h e y

a r e

k n o w n

t h e r e

w i l l a

l a r g e

n u m b e r . I t

i s d e s i r e d

t o e l i m i n a t e

t h e

e x p l i c i t a p p e a r a n c e o f t h e e i g e n s t a t e s .

In s o d o i n g o n e u s e s

E i 

t

or

2

2 

V i

2 m t

L e o

V a n

H o v e

c h a m p i o n e d

t h i s

i d e a .

T h e

t i m e

d e p e n d e n c e

i s s u b s e q u e n t l y

u s e d

i n a

F o u r i e r

t r a n s f o r m a t i o n .

A s s u m i n g t h a t t h e i n t e r a c t i o n o c c u r r e d a t

t t 0 . T h e w a v e f u n c t i o n a t t h e d e t e c t o r a t t h e

p o s i t i o n

r f o r

t t 0

i s a s o l u t i o n o f t h e e q u a t i o n

2



2

2 m

( r , t )

V ( r , t ) ( r , t ) i

t

F o r

t t 0

b e f o r e t h e c o l l i s i o n h a s o c c u r r e d

t h e i n c i d e n t n e u t r o n w a v e f u n c t i o n i s

inc

( r , t )

e i ( k . r w 0 t )

where

k neutron momentum

w 0 neutron energy

T h e s o l u t i o n a t t h e d e t e c t o r a t ( r , t ) is

( r , t ) inc ( r , t ) scat ( r , t )

G i v e n t h a t f o r t h e i n c i d e n t w a v e inc a w a y

f r o m t h e p o t e n t i a l r e g i o n

2



2

( r , t )

i

( r , t ) 0

2 m

t

inc

then

2



2

( r , t )

i

( r , t ) V ( r , t ) ( r , t )

2 m

t

scat

A p p r o x i m a t i o n s :

( a ) B o r n a p p r o x i m a t i o n

I n t h e r i g h t h a n d s i d e o f t h e a b o v e e q u a t i o n :

( r , t )

inc ( r , t )

( b ) F e r m i P s e u d o p o t e n t i a l

V n ( r , t )

where

2 2

m

a

n [ r

R n ( t )]

R n position of nucleus n at time t

n

a n bound scattering related to the bound cross sec tion as

n

b

4 a 2

( a 2

b ) 4

H e n c e t h e e q u a t i o n t o b e s o l v e d i s

2 2 mi

scat ( r , t ) 4 a n [( r

R n ( t 0 ) ] inc ( r , t )

t n

N o t e t h a t

R n ( t 0 )

i s f o r r e a c t i o n s t h a t o c c u r r e d a t

the

t t 0 .

M a k i n g

u s e

o f t h e

G r e e n s

f u n c t i o n m e t h o d t o

s o l v e

t h e

e q u a t i o n

a b o v e .

L e t G ( r r ' , t t 0 ) b e t h e

G r e e n s f u n c t i o n , h e n c e :

2 2 mi '

t G ( r

r , t

t 0 )

4 ( r r ' ) ( t t 0 )

T h e s o l u t i o n f o r scat ( r , t ) is

scat ( r , t ) d dt 0 G ( r r ' , t t 0 ) inc ( r ' , t 0 ) a n [ r R n ( t 0 )]

t 0 n

w h e r e i s t h e v o l u m e .

S u b s t i t u t i n g t h e v a l u e s f o r

G ( r

r ' , t t 0 ) a n d

inc

w e h a v e

m

2

n

t

scat

( r , t ) i

dt 0

( t t 0

) 3 / 2 a

d [ r R n

( t 0

)]

 n

2

exp im

r r '

exp [ i ( k 0 . r

w 0 t )]

2 ( t t 0 )

T h e a b o v e e x p r e s s i o n

i s t h e

s o l u t i o n f o r t h e

s c a t t e r e d

w a v e

scat

a t t h e d e t e c t o r a t

t h e

p o s i t i o n r f o r

t h e t i m e

t t 0

f o r a n i n c i d e n t

n e u t r o n o f

e n e r g y

w 0

a n d m o m e n t u m

k 0 . I t i s

n o t

c l e a r h o w

t o o b t a i n t h e

s c a t t e r e d

a m p l i t u d e

f r o m

t h e

a b o v e

e q u a t i o n .

L e o n

V a n

H o v e

c a m e

u p w i t h a c l e a v e r t r a n s f o r m o f t h e t y p e

i d e a

o f u s i n g

a F o u r i e r

' iw ' t

scat ( r , t ) f ( r , w ) e

w '

and

1

f ( r , w ' )

T

T

dt e iw ' t

0

scat

( r , t )

f ( r , w )

r e l a t e s t o t h e s c a t t e r e d w a v e

a m p l i t u d e .

A f t e r L O T S O F A L G E B R A

1 T

n 0

f ( r , w ' )

dt e iw ' t 0 a

d  [ r

R ( t ) ] e i .

0 n

Tr ' 0 n

F o r

d e r i v a t i o n

o f t h e

a b o v e

e q u a t i o n

s e e :

T h e r m a l 49 52

N e u t r o n S c a t t e r i n g b y

E n g e l s t a f f

p a g e s

T h e s c a t t e r e d n e u t r o n h a s

k 0 k momentum change

w ' w 0 w energy change

T h e s c a t t e r i n g d i f f e r e n t i a l c r o s s s e c t i o n i s

d e f i n e d a s

d 2 T 2

r ' 2

f ( r , w )

dEd h 0

0 and

initial

and

final

neutron velocity

R e a d : T h e

E l e m e n t s

o f N e u t r o n

I n t e r a c t i o n

Theor y A n t h o n y F o d e r a r o p a g e 5 5 5

2 1

f ( r , w )

T 2 r ' 2

d e iw a * a dr " dr e i .( r r " )

m n

 m , n

[ r " R n (0 ) ] [ r R n ( )]

T h e b a r i n d i c a t e s t i m e a v e r a g i n g .

T h e d o u b l e d i f f e r e n t i a l c r o s s s e c t i o n i s f i n a l l y o b t a i n e d a s

d 2

1

dEd h

d e iw

a * a

dr ' dr e i . r

m

n

0  m , n

[ r " R n (0 ) r ] [ r R n ( )]

T h e S p a c e ­ T i m e C o r r e l a t i o n F u n c t i o n ( V a n H o v e )

1

N

G ( r , ) dr ' [ r ' R n ( 0) r ] [ r R n ( )]

m , n

G ( r , ) is not the Green ' s function ! !

I n t e r p r e t a t i o n o f t h e

G ( r , )

T w o p a r t s :

f o r

m n

( d i a g o n a l t e r m s )

G s ( r , )

f o r m n

( o f f d i a g o n a l t e r m s ) G d ( r , )

I n t e r p r e t a t i o n :

G s ( r , ) self

correlation

function : a s e c o n d

I D E N T I C A L n u c l e u s i s p r e s e n t

G d ( r , ) distinct correlation

function : a

s e c o n d D I S T I N C T n u c l e u s i s p r e s e n t

G ( r , ) G s ( r , ) G d ( r , )

w h e r e

1 N

G s ( r , )

N

and

n 1

dr ' [ r ' R n ( 0) r ] [ r

R n ( )]

1 N

G d ( r , )

N

dr ' [ r ' R n ( 0) r ] [ r

R n ( )]

D e f i n i n g

m n 1

a 2

 1 a * a

N m , n

m n mn

a 2

1 a * a

2

N

m n

m n

d 2

dEd

d 2

coh

dEd

d 2

incoh

dEd

A s s u m i n g

o n l y

c o h e r e n t

i n e l a s t i c s c a t t e r i n g

p r e s e n t , i . e . ,

d 2

a 2  a 2 a

d 2

dEd

coh

dEd

d 2

a 2

dEd

h 0

dr d

e i ( . r w ' ) G ( r , )

R e c a l l t h a t

a 2 b

4

and

E

E 0

0

d 2

b ˜

E

E 0

dEd

4

S ( , w ' )

w h e r e

S ˜ ( 1

i (

, w ' )

h

S ˜ (

dr d e

. r w ' ) G ( r , )

, w ' ) Scattering Law

S ˜ (

, w ' ) can b e

d 2

o b t a i n e d d i r e c t l y f r o m

m e a s u r e m e n t s o f

dEd

P r o p e r t i e s o f

S ˜ (

, w ' )

D e p e n d s

o n l y o n t h e d y n a m i c s o f t h e

s c a t t e r c e n t e r

( b ) S u m r u l e r

˜ 2

w S ( , w ) dw 2 M

( c ) C o n d i t i o n d e r i v e d f r o m t h e d e t a i l e d

b a l a n c e

˜ KT ˜

w

S ( , w ) e S (

, w )

D e f i n i t i o n s :

S ˜ ( , w ) e 2 S ( , )

W h e r e

2 2

and

E E 0

2 mAKT KT

S i n c e

2 2 2

k 0 k

k 0 k 2 k 0 . k

cos

2 2

0

2 ( k 2

0

k 2 2 k

. k cos )

E 0 E 2 EE 0 cos )

2 mAKT

AKT

2 mAKT

Hence t h e d o u b l e d i f f e r e n t i a l c r o s s s e c t i o n

b e c o m e s

d 2

dEd

b

4 KT

E

e 2 S ( , )

E 0

Notations:

d 2 dEd or

s ( E 0 E , )

or

s ( E 0 E , ) where

cos

S i m p l e E x a m p l e :

( 1 )

Scatter er i s a

s i n g l e

n u c l e u s

o f m a s s M .

O n l y c o h e r e n t s c a t t e r i n g i s a c c o u n t e d f o r ;

( 2 ) Scatter er i s f r e e a n d a t r e s t

T h i s

c o r r e s p o n d s t o

t h e

s i t u a t i o n

d e a l t

w i t h i n

t h e

t h e o r y

o f n e u t r o n

m o d e r a t i o n

w h e r e

t h e

c h e m i c a l r e g i o n e f f e c t s a r e n e g l i g i b l e .

( E

E , ) b

E

˜

S ( , w )

0

s 0 4 E

cos

S ˜ (

, w ' )

i s a d e l t a f u n c t i o n a s

˜ E 0 E 2 ( EE )

1 / 2

0

S ( , w ) ( E 0 E )

A

cos and A M

m

R e c a l l t h a t

w E 0 E

2 2

2 M

A l s o ,

E 0

E 2 ( EE 0

A

) 1 / 2

d 2 sin d

cos

d sin d d 2 ( d )

and

s ( E 0 E ) s ( E 0 E , ) d

4

s ( E 0 E )

1

2 s ( E 0 E , ) d

1

E 1 / 2 1

E E 2( EE

) 1 / 2

s 0

0

( E E ) 2 b ( E E 0 0 ) d

4 E 0 1 A

C h a n g e o f v a r i a b l e s

0

0

E E 2 ( EE

) 1 / 2

x E 0 E

A

such that

2 ( EE

) 1 / 2

dx 0 d

A

1 x E 0 E

( E 1 / 2

E 1 / 2 ) 2

0

A

E 1 / 2 A x

( E E ) 2 b

( x ) dx

x

s 0 4

E 0

2( E 0

E ) 1 / 2

s ( E 0

E ) b A

4 E

0

R e c a l l t h a t

2

A 1

b free

A

s ( E 0 E )

( A 1 ) 2

4 A

1

E

free

0

A 1 2 4 A

if 1 2

hence

A 1 ( A 1 )

s ( E 0

E )

1

( 1 ) E 0

free

Energy range ?

A 2 2 A 1

E ( A 1 ) 2 E 0

1 E E 0

1 E ( 1 ) E 0

1

0

( 1 ) E

s ( E 0 E )

free for ( 1 ) E 0 E

E 0

0 otherwise

( N u c l e a r R e a c t o r A n a l y s i s D u d e r s t a d t a n d

H a m i l t o n p a g e 4 4 )

M IT OpenCourseWare http://ocw.mit.edu

22.106 Neutron Interactions and Applications

Spring 20 10

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .