L u i z L e a l
O a k R i d g e N a t i o n a l L a b o r a t o r y
L e c t u r e s
P r e s e n t e d
a t t h e N u c l e a r
E n g i n e e r i n g
D e p a r t m e n t
o f t h e
M a s s a c h u s e t t s I n s t i t u t e o f T e c h n o l o g y ( M I T )
Courtesy of Luiz Leal, Oak Ridge National Laboratory. Used with permission.
T h e r m a l N e u t r o n S c a t t e r i n g
K e r n e l D e v e l o p m e n t
T h e
p r o c e d u r e
c o n s i s t s
o f f i n d i n g t h e
a m p l i t u d e
o f t h e
s c a t t e r i n g w a v e f u n c t i o n
t h a t
l e a d s t o t h e d i f f e r e n t i a l s c a t t e r i n g c r o s s s e c t i o n . I n d o i n g s o , a f e w t h i n g s w i l l b e a s s u m e d :
( 1 ) F i r s t B o r n a p p r o x i m a t i o n ;
( 2 ) F e r m i P s e u d o ‐ p o t e n t i a l ;
( 3 ) T i m e ‐ d e p e n d e n t S c h r ö d i n g e r e q u a t i o n
( T D S E )
The
f i r s t
t w o
a s s u m p t i o n s
h a v e
a l r e a d y
b e e n
di s c u s s e d . W h y a s s u m e t h e T D S E i s e x p l a i n e d a s
f o l l o w s : t h e e n e r g y d e p e n d e n c y ( e x p l i c i t l y ) i n
t h e
S c h r ö d i n g e r
e q u a t i o n
i m p l i e s
t h a t
t h e
e i g e n s t a t e s
o f t h e s c a t t e r i n g
s y s t e m a r e
k n o w n ,
i . e . ,
i n i t i a l s
a n d f i n a l
s t a t e s .
U s u a l l y
t h e y
a r e
n o t
k n o w n
a n d
e v e n i f t h e y
a r e
k n o w n
t h e r e
w i l l a
l a r g e
n u m b e r . I t
i s d e s i r e d
t o “ e l i m i n a t e ”
t h e
e x p l i c i t a p p e a r a n c e o f t h e e i g e n s t a t e s .
In s o d o i n g o n e u s e s
E i
t
or
2
2
V i
2 m t
L e o
V a n
H o v e
c h a m p i o n e d
t h i s
i d e a .
T h e
t i m e
d e p e n d e n c e
i s s u b s e q u e n t l y
u s e d
i n a
F o u r i e r
t r a n s f o r m a t i o n .
A s s u m i n g t h a t t h e i n t e r a c t i o n o c c u r r e d a t
t t 0 . T h e w a v e f u n c t i o n a t t h e d e t e c t o r a t t h e
p o s i t i o n
r f o r
t t 0
i s a s o l u t i o n o f t h e e q u a t i o n
2
2
2 m
( r , t )
V ( r , t ) ( r , t ) i
t
F o r
t t 0
b e f o r e t h e c o l l i s i o n h a s o c c u r r e d
t h e i n c i d e n t ‐ n e u t r o n w a v e f u n c t i o n i s
inc
( r , t )
e i ( k . r w 0 t )
where
k neutron momentum
w 0 neutron energy
T h e s o l u t i o n a t t h e d e t e c t o r a t ( r , t ) is
( r , t ) inc ( r , t ) scat ( r , t )
G i v e n t h a t f o r t h e i n c i d e n t w a v e inc a w a y
f r o m t h e p o t e n t i a l r e g i o n
2
2
( r , t )
i
( r , t ) 0
2 m
t
inc
then
2
2
( r , t )
i
( r , t ) V ( r , t ) ( r , t )
2 m
t
scat
A p p r o x i m a t i o n s :
( a ) B o r n a p p r o x i m a t i o n
I n t h e r i g h t ‐ h a n d s i d e o f t h e a b o v e e q u a t i o n :
( r , t )
inc ( r , t )
( b ) F e r m i P s e u d o ‐ p o t e n t i a l
V n ( r , t )
where
2 2
m
a
n [ r
R n ( t )]
R n position of nucleus n at time t
n
a n bound scattering related to the bound cross sec tion as
n
b
4 a 2
( a 2
b ) 4
H e n c e t h e e q u a t i o n t o b e s o l v e d i s
2 2 mi
scat ( r , t ) 4 a n [( r
R n ( t 0 ) ] inc ( r , t )
t n
N o t e t h a t
R n ( t 0 )
i s f o r r e a c t i o n s t h a t o c c u r r e d a t
the
t t 0 .
M a k i n g
u s e
o f t h e
G r e e n ’ s
f u n c t i o n m e t h o d t o
s o l v e
t h e
e q u a t i o n
a b o v e .
L e t G ( r r ' , t t 0 ) b e t h e
G r e e n ’ s f u n c t i o n , h e n c e :
2 2 mi '
t G ( r
r , t
t 0 )
4 ( r r ' ) ( t t 0 )
T h e s o l u t i o n f o r scat ( r , t ) is
scat ( r , t ) d dt 0 G ( r r ' , t t 0 ) inc ( r ' , t 0 ) a n [ r R n ( t 0 )]
t 0 n
w h e r e i s t h e v o l u m e .
S u b s t i t u t i n g t h e v a l u e s f o r
G ( r
r ' , t t 0 ) a n d
inc
w e h a v e
m
2
n
t
scat
( r , t ) i
dt 0
( t t 0
) 3 / 2 a
d [ r R n
( t 0
)]
n
2
exp im
r r '
exp [ i ( k 0 . r
w 0 t )]
2 ( t t 0 )
T h e a b o v e e x p r e s s i o n
i s t h e
s o l u t i o n f o r t h e
s c a t t e r e d
w a v e
scat
a t t h e d e t e c t o r a t
t h e
p o s i t i o n r f o r
t h e t i m e
t t 0
f o r a n i n c i d e n t
n e u t r o n o f
e n e r g y
w 0
a n d m o m e n t u m
k 0 . I t i s
n o t
c l e a r h o w
t o o b t a i n t h e
s c a t t e r e d
a m p l i t u d e
f r o m
t h e
a b o v e
e q u a t i o n .
L e o n
V a n
H o v e
c a m e
u p w i t h a c l e a v e r t r a n s f o r m o f t h e t y p e
i d e a
o f u s i n g
a F o u r i e r
' iw ' t
scat ( r , t ) f ( r , w ) e
w '
and
1
f ( r , w ' )
T
T
dt e iw ' t
0
scat
( r , t )
f ( r , w )
r e l a t e s t o t h e s c a t t e r e d w a v e
a m p l i t u d e .
A f t e r L O T S O F A L G E B R A
1 T
n 0
f ( r , w ' )
dt e iw ' t 0 a
d [ r
R ( t ) ] e i .
0 n
Tr ' 0 n
F o r
d e r i v a t i o n
o f t h e
a b o v e
e q u a t i o n
s e e :
T h e r m a l 49 ‐ 52
N e u t r o n S c a t t e r i n g b y
E n g e l s t a f f
p a g e s
T h e s c a t t e r e d n e u t r o n h a s
k 0 k momentum change
w ' w 0 w energy change
T h e s c a t t e r i n g d i f f e r e n t i a l c r o s s s e c t i o n i s
d e f i n e d a s
d 2 T 2
r ' 2
f ( r , w )
dEd h 0
0 and
initial
and
final
neutron velocity
R e a d : T h e
E l e m e n t s
o f N e u t r o n
I n t e r a c t i o n
Theor y A n t h o n y F o d e r a r o p a g e 5 5 5
2 1
f ( r , w )
T 2 r ' 2
d e iw a * a dr " dr e i .( r r " )
m n
m , n
[ r " R n (0 ) ] [ r R n ( )]
T h e b a r i n d i c a t e s t i m e a v e r a g i n g .
T h e d o u b l e d i f f e r e n t i a l c r o s s s e c t i o n i s f i n a l l y o b t a i n e d a s
d 2
1
dEd h
d e iw
a * a
dr ' dr e i . r
m
n
0 m , n
[ r " R n (0 ) r ] [ r R n ( )]
T h e S p a c e T i m e C o r r e l a t i o n F u n c t i o n ( V a n H o v e )
1
N
G ( r , ) dr ' [ r ' R n ( 0) r ] [ r R n ( )]
m , n
G ( r , ) is not the Green ' s function ! !
I n t e r p r e t a t i o n o f t h e
G ( r , )
T w o p a r t s :
f o r
m n
( d i a g o n a l t e r m s )
G s ( r , )
f o r m n
( o f f ‐ d i a g o n a l t e r m s ) G d ( r , )
I n t e r p r e t a t i o n :
G s ( r , ) self
correlation
function : a s e c o n d
I D E N T I C A L n u c l e u s i s p r e s e n t
G d ( r , ) distinct correlation
function : a
s e c o n d D I S T I N C T n u c l e u s i s p r e s e n t
G ( r , ) G s ( r , ) G d ( r , )
w h e r e
1 N
G s ( r , )
N
and
n 1
dr ' [ r ' R n ( 0) r ] [ r
R n ( )]
1 N
G d ( r , )
N
dr ' [ r ' R n ( 0) r ] [ r
R n ( )]
D e f i n i n g
m n 1
a 2
1 a * a
N m , n
m n mn
a 2
1 a * a
2
N
m n
m n
d 2
dEd
d 2
coh
dEd
d 2
incoh
dEd
A s s u m i n g
o n l y
c o h e r e n t
i n e l a s t i c s c a t t e r i n g
p r e s e n t , i . e . ,
d 2
a 2 a 2 a
d 2
dEd
coh
dEd
d 2
a 2
dEd
h 0
dr d
e i ( . r w ' ) G ( r , )
R e c a l l t h a t
a 2 b
4
and
E
E 0
0
d 2
b ˜
E
E 0
dEd
4
S ( , w ' )
w h e r e
S ˜ ( 1
i (
, w ' )
h
S ˜ (
dr d e
. r w ' ) G ( r , )
, w ' ) Scattering Law
S ˜ (
, w ' ) can b e
d 2
o b t a i n e d d i r e c t l y f r o m
m e a s u r e m e n t s o f
dEd
P r o p e r t i e s o f
S ˜ (
, w ' )
D e p e n d s
o n l y o n t h e d y n a m i c s o f t h e
s c a t t e r c e n t e r
( b ) S u m r u l e r
˜ 2
w S ( , w ) dw 2 M
( c ) C o n d i t i o n d e r i v e d f r o m t h e d e t a i l e d
b a l a n c e
˜ KT ˜
w
S ( , w ) e S (
, w )
D e f i n i t i o n s :
S ˜ ( , w ) e 2 S ( , )
W h e r e
2 2
and
E E 0
2 mAKT KT
S i n c e
2 2 2
k 0 k
k 0 k 2 k 0 . k
cos
2 2
0
2 ( k 2
0
k 2 2 k
. k cos )
E 0 E 2 EE 0 cos )
2 mAKT
AKT
2 mAKT
Hence t h e d o u b l e d i f f e r e n t i a l c r o s s s e c t i o n
b e c o m e s
d 2
dEd
b
4 KT
E
e 2 S ( , )
E 0
Notations:
d 2 dEd or
s ( E 0 E , )
or
s ( E 0 E , ) where
cos
S i m p l e E x a m p l e :
( 1 )
Scatter er i s a
s i n g l e
n u c l e u s
o f m a s s M .
O n l y c o h e r e n t s c a t t e r i n g i s a c c o u n t e d f o r ;
( 2 ) Scatter er i s f r e e a n d a t r e s t
T h i s
c o r r e s p o n d s t o
t h e
s i t u a t i o n
d e a l t
w i t h i n
t h e
t h e o r y
o f n e u t r o n
m o d e r a t i o n
w h e r e
t h e
c h e m i c a l r e g i o n e f f e c t s a r e n e g l i g i b l e .
( E
E , ) b
E
˜
S ( , w )
0
s 0 4 E
cos
S ˜ (
, w ' )
i s a d e l t a f u n c t i o n a s
˜ E 0 E 2 ( EE )
1 / 2
0
S ( , w ) ( E 0 E )
A
cos and A M
m
R e c a l l t h a t
w E 0 E
2 2
2 M
A l s o ,
E 0
E 2 ( EE 0
A
) 1 / 2
d 2 sin d
cos
d sin d d 2 ( d )
and
s ( E 0 E ) s ( E 0 E , ) d
4
s ( E 0 E )
1
2 s ( E 0 E , ) d
1
E 1 / 2 1
E E 2( EE
) 1 / 2
s 0
0
( E E ) 2 b ( E E 0 0 ) d
4 E 0 1 A
C h a n g e o f v a r i a b l e s
0
0
E E 2 ( EE
) 1 / 2
x E 0 E
A
such that
2 ( EE
) 1 / 2
dx 0 d
A
1 x E 0 E
( E 1 / 2
E 1 / 2 ) 2
0
A
E 1 / 2 A x
( E E ) 2 b
( x ) dx
x
s 0 4
E 0
2( E 0
E ) 1 / 2
s ( E 0
E ) b A
4 E
0
R e c a l l t h a t
2
A 1
b free
A
s ( E 0 E )
( A 1 ) 2
4 A
1
E
free
0
A 1 2 4 A
if 1 2
hence
A 1 ( A 1 )
s ( E 0
E )
1
( 1 ) E 0
free
Energy range ?
A 2 2 A 1
E ( A 1 ) 2 E 0
1 E E 0
1 E ( 1 ) E 0
1
0
( 1 ) E
s ( E 0 E )
free for ( 1 ) E 0 E
E 0
0 otherwise
( N u c l e a r R e a c t o r A n a l y s i s D u d e r s t a d t a n d
H a m i l t o n p a g e 4 4 )
M IT OpenCourseWare http://ocw.mit.edu
22.106 Neutron Interactions and Applications
Spring 20 10
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .