Resonance Theor y
Basi cs
• Dea ls with th e de scr ip tio n of n ucle us - nu cleus int era ction an d aim s at t he pre dictio n of the expe rime nta l structure of cross - se ction s
• Int era ction mo de l whi ch trea ts the nu cleus as a bl ack bo x
– Pote nti al is un kn own so mod el s ca nn ot pr ed ic t acc ur ate ly
– Only car e a t w hat ca n b e o bs erv ed bef ore an d afte r a c ol lis io n
R - matrix theory
• Intr odu ce d by W ign er and Eisen bud (1 947 )
• Requ ire s no in for mati on ab ou t i nte rn al s tru ct ur e of the nu cl eu s
• It is mathe matic all y rig oro us
– Usu all y app rox imated
– Most physi cal and appropriate of resona nce fr amework
• Cros s - se cti ons are par ametr ize d in ter ms of
– Int eraction radii & boun dary cond itio n
– Re sona nce ene rgy & wi dths
– Quan tum nu mber (angu la r momentum, s pi n, …)
Why bother?
• Cou ld n’ t we j ust use th e me asure d da ta ?
– Too muc h i nfo rma tio n, too lit tle un de rs tan di ng
• x .s. vs ene rgy wo uld requi res 100 ,000’ s of ex pe rimental po in ts
• An gul ar distributio ns wo uld requi re even mor e
– Need fo r ext ra po la tio n
• Di ff erent en ergi es
• Temperature cha nge s
• Geometr y consi derations (self - shi eld ing, …)
• Un stabl e or rare nucl id es
R - matrix theory As sumpti ons
• Ap pl ica bi lity of no n - rela tivi stic qu an tum mecha ni cs
• Un importance of p rocesses wh ere mor e than t wo product nucl ei are f orm ed
• Un importance of a ll processes of creation or d estr uction
• Ex istence of a fin ite radia l distance beyo nd wh ich no nucl ear interact io n occurs
• Ba sed on the no tion that w e can de scrib e accu rately wh at’s f ar eno ugh fr om the compound nucl eus but not wh at’s insi de
Definiti on
• R - matri x i s call ed a c han nel - ch ann el matri x
• Chan ne l
– De sig nates a possi ble pai r of n ucle us and part icl e an d the spi n of the pa ir
– Incoming chann el (c)
– Outgoing channe l (c’)
– De fine d by pa ir of pa rt icl es, mass, ch arge, spi n
• Many pos sib le ch anne ls exist
• In comi ng chan ne l (c)
– We can co ntr ol th e i nc omin g ch an ne l b y the way we se t up t he ex pe rime nt
• Ne utron energy
• Target
• Outg oi ng chan ne l (c’)
– We can ob se rv e t he ou tgo in g c ha nn el with pr ec is e meas ur eme nt
Total spi n of the c hannel
Cross - sec tion
• In 22 .1 01 , you used th e ph ase shift th eo ry to de term ine an expre ss ion for the sc att erin g cross - section
– This ex pr es si on c an be de fin ed in te rms of the co lli si on matr ix U
– Diffe re nt re la tio ns be twee n x. s an d U ex is t for oth er in ter ac tio n t yp e
Goal of R - matrix
• Phase sh ift theo ry req uir es kn owled ge of t he po ten tia l V (r )
– Ap prox imated by squa re we ll
• R - matri x t heo ry bu ild s a rel ati ons hip bet ween a matr ix R tha t d ep en ds on ly on ob se rv ab le , mea su ra bl e qu an tit ie s and th e c ol lis io n ma tri x
– Byp asses the n eed for the p otential
– Re qui res ex perimental data
• We will d er iv e a s impl is tic c as e of a n eu tro n in ter ac tio n with n o s pi n d ep en de nc e
R - Matrix Derivati on
• Sta rt with th e stea dy - state Schr ö di ng er eq ua tio n with a com ple x po ten tia l
– Eige nv al ue pr ob le m
• The wavefu nctio n is expressed in the fo rm of pa rtia l wa ves
• In rad ia l g eo me try, th e mo me nt is a solut ion of the fol lowin g equ ati on
(1)
• Add iti on al ly, th e mo me nt can be rep resent ed by an expa nsion in term s of the eig en vectors of the solu tio n
– Eigen ve cto rs are al so so lut ion s of the ab ov e eq ua tio n
• Eig en vectors are also a sol uti on of : (2)
• Bou nd ary cond iti on s
– Both eq ua tio ns mus t b e f in ite at r = 0
– Log ari thmic de riv ati ve at nuc lea r s urf ac e i s tak en to be c on st an t (wher e B l is re al )
• Th e ei ge nvecto rs fo rm a ba sis se t, if no rmal ized pro pe rly, the y have the fol lowin g pro pe rty:
– They form an ort hon orma l bas is se t
• From thi s con dit ion , th e e xpan sion coef ficie nt s can be d ef in ed a s:
• Our go al is to e lim in at e the p ot en tia l V (r)
– Mult ip ly eq (1 ) b y the ei ge nv ec tor an d mult ip ly eq (2 ) b y the mome nt
– Subt ra ct re su lti ng eq ua tio ns
– Int eg ra te be twee n 0 a nd a
– Resu lt: Gives an ex pre ss ion for
• Which c an be used t o find the ex pan sio n coefficie nts
• We can no w fin d an e xpression fo r th e mo me nt at r = a
• Whe re we can extract a d efi nit ion of th e R - ma trix
• Or mo re commo nly
– γ λ l is the red uc ed width ampl itu de for lev el λ
an d ang ul ar mome ntu m l
– λ is the re so na nc e
– E λ is the ene rgy at the res ona nc e p eak
– γ λ l ’s an d E λ ’s ar e u nk no wn pa ra mete rs an d ca n be ev al ua ted by ob se rv in g me as ur ed cr os s - se ct io ns
• E λ is the ener gy val ue at the peak
• γ λ l is a m eas ure of the width of the re sonanc e at a cer ta in am plit ude f or the n uclei at rest
– Re la te d to the m or e com m on Γ thro ug h a m at rix t ran sfo rm
– No t easy to m easur e becau se of te m per at ur e eff ect s (D op pler)
– Usu al ly infer red fr om the reso nan ce integral
General Form
Advantages /Disadv atages of R - matrix theory
• Disad va nta ges
– Mat rix i nversion is al wa ys requi red
– Ch ann el radii and bou nda ry cond itio n app ear arbitrar y
– Di ff icu lt to acco mmodate di rect reactio ns (i.e.
potential scat tering)
• Adva nta ge s
– Ch an ne l radi i an d bo un da ry con di tion ha ve na tural
defin itio ns wh ich makes t hem app eal ing
– Re duce d wi dth conce pt has an appe ali n g relatio n to nu cle ar spectroscop y
Boundary conditon
• In the ea rly da ys, the re was much confusi on in the
choi ce of cha nne l radii and bou nda ry cond itio n
– This topic has been deba ted heavily ov er the las t 40 y ear s!
– Early pape rs des cr ibed their ch oic e as ar bitrar y
– Opt ical model has facilit ated the choic e of these parameters
• “Natural” ch oice s ex ist
– De sc ribe d in more details in pdf R - matrix theory (2 )
– B l mus t be ke pt re al to pr es er ve the nature of the eigen value
problem
– Ch oic e of boun dar y co ndition is to se t it equa l to the sh ift function at so me point in t he ener gy interval of meas ur ement.
• Ke ep on ly rea l pa rt of t he log ari thmic de riva tive of the ou tgo in g w ave
– Mat ching radii usua lly selected base d on squa re - well int erac ti on
Relation with colli sio n matrix
• We found an ex pre ss ion for the so lut ion of t he wav efu nc tio n tha t doe sn ’t de pe nd on th e po ten tia l
– De pe nd s on R - matrix
– R - mat rix d epe nds on ex perimental ly measured data
• Tota l w av e fun ct io n in r eg io n ou ts id e nuc le ar po ten tia l inte ra ct io n c an be ex pr es se d a s a lin ea r comb in ati on of the in co ming an d o utg oi ng wav es
• From R - ma trix an al ysis , we f ou nd
• We can the n f ind th at
• Defi ni ng
• We ge t
General form
• No ap pro xima tio n ha s be en ma de
– Exac t re pr es en tat io n b etwe en U an d R
Level matrix
• Th e R - ma trix is fa irly sma ll bu t f ai rly comp lex to bu ilt
• Wign er int rod uced a cle are r rep resent ati on calle d the A - ma trix whose ele me nts correspon d to en erg y l evels
– A is much lar ger
– But its pa ra mete rs ar e cl ea rly de fin ed
– Summati on is ov er in co ming ch an ne ls
A - matrix
• Very la rge
– Corr es po nd s to the tot al nu mbe r of re so na nc es
– Symmetr ic mat rix
– Diag on al ter ms d ep en d o n e ac h l ev el ind epe nde ntl y
– Off - di ag on al te rms ar e mi xe d t er ms t ha t in tro du ce the in flu en ce of di ffe re nt lev el s on eac h othe r
Mult i - lev el Breit Wigner
• Neg le cting of f - di ag on al te rms yield s the Breit Wign er a pp roxima tio n
– Anal yz in g a s in gl e l ev el at a t ime yi el ds th e Single le ve l B rei t Wig ner (SLBW) ap pr ox imat io n
• Works we ll if resonance s are wel l space d
• Origi na ll y de vel op ed by Wig ne r ba sed on an
ana lo gy to the disp ersion of l ig ht
– In so me ca se s, off - di ag on al ter ms ma tte r
Reic h Moore For mali sm
• Curre nt me th od o f cho ice
– Keep s most of f - di ag on al te rms
– Negl ec ts impa ct of ga mma ch an ne ls
• Measurements have show n that fluctuatio ns betwee n gamm a chann els at d ifferent leve ls must be small
• ML BW is mo re restricti ve th an Rei ch Mo ore
– Poor tre atme nt of mult i - ch an ne l eff ec ts
• SLBW is mo re restrictive tha n ML BW
– Can gi ve ne ga tiv e c ro ss - se ct io n val ue s
Reich Moore vs SLBW (U235 fis sion)
• Solid line : S LBW
• Dotte d line : RM
Fe - 56: RM, MLBW, SLBW
• So li d li ne : RM
• Da shed li ne: MLBW
• Do tt ed li ne: SL BW
M IT OpenCourseWare http://ocw.mit.edu
22.106 Neutron Interactions and Applications
Spring 20 10
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .