R adiati on S topping P owe r , D am age C ascade s, D isplacem e nt and the D P A
L ear n in g O b ject ives
• Pre di c t st oppi ng pow e r of ra di a t i on a s func t i ons of m a t e ri a l , type , e ne r gy of ra di a t i on
• Co n cep t u al i ze r ad i at i o n d am ag e cas cad es , s t ag es , a nd e vol ut i on i n t i m e
• E s tim a te th e q u a n tita tiv e d isp la c e m e n t r a te s f r o m ra di a t i on, a nd de fi ne t he D P A
• T ra c k t he bui l dup of ra di a t i on poi nt de fe c t s a s func t i ons of t e m pe ra t ure , de fe c t c onc e nt ra t i on
Bu ild in g Up t o Rad iat io n
E ffe c ts
S ho r t & Y i p. C u rre n t O p in io n s in S o lid S t a t e M a t e r ia l S c ie n c e ( 2015)
… w e ’ l l be he r e n e x t w e e k!
W e a r e h er e…
Courtesy of Elsevier, Inc., http://www.sciencedirect.com . Used with permission.
Source: Short, M. , and S. Yip. " Materials A ging at the M esoscale: Kinetics of T hermal, S tress, R adiation A ctivations ." Current Opinion in Solid State and Materials Science 19, no. 4 (2015): 245-52.
22. 14 – Nu clear M ater ials Slid e 3
S t o p p in g P o w er
• M o r e en er g et i c p ar t i cl es do m ore da m a ge … to a poi nt
• … but how m uc h?
• C ha r ge vs. no c ha r ge ?
• W ha t a bout da m a ge vs. m ean f r ee p at h ?
h t tp: / / w w w .s r i m .o r g
Courtesy of James F. Ziegler. Used with permission.
St o p p i n g p o w e r o f p r o t o n s i n i r o n
Co u lo m b ic/Nu clear S t o p p in g P o w er
• St oppi ng P ow e r i s de fi ne d a s di f fe re nt i a l e ne r gy l oss a s a func t i on of e ne r gy:
𝑁 ∗ 𝑆
𝜕 𝐸
𝐸
= −
𝜕𝑥
• Se pa ra bl e c om pone nt s due t o nuc l e a r (s c re e ne d nuc l e us C oul om bi c ), e l e c t roni c , a nd ra di a t i ve t e rm s:
𝐸
𝑁 ∗ 𝑆
= −
𝜕 𝐸
𝜕𝑥
𝑛𝑢𝑐 𝑙 .
−
𝜕 𝐸
𝜕𝑥
𝑒 𝑙 𝑒 𝑐 .
−
𝜕 𝐸
𝜕𝑥
𝑟 𝑎𝑑 .
R a nge
0
𝑆
𝐸
• Int e gra t e i nve rs e of s t oppi ng
So u r c e: W i k i med i a C o mmo n s
pow e r ove r t he e ne r gy
ra nge of t he pa rt i c l e : 𝑅 𝑎𝑛𝑔 𝑒
• N o t a ll p a r tic le s h a v e i d en t i cal r an g e, str a g g lin g d e sc r ib e s th is v a r ia tio n
= ∫ 𝐸 𝑚𝑎 𝑥 1
𝑑 𝐸
R a n ge
This image is in the public domain.
S t o p p in g P o w er Co m p o n en t s
H . P a u l. A I P C onf . P r oc . 1525 : 309 ( 2013)
• N uc l e a r stoppi ng pow e r: First a ssum e C oul om bi c n u c le u s in te r a c tio n s , d e s c r ib e in te r a to m ic p o te n tia l:
𝑉
= 𝑍𝑍 1 𝑍𝑍 2 𝗌 2
𝑟
𝑟
(1/ r de pe nde nc e )
• Pos i t i ve nuc l e us sc re e ne d by ne ga t i ve e l e c t ron c l oud:
− 𝑟
𝑎
𝑍 1 𝑍 2 𝜀𝜀 2
𝑟
𝑉
=
4 𝜋 𝜀𝜀 0 𝑟
𝑒
E ff e c t i ve s c r e e n i n g r ad i u s
S toppi ng P ow e r C ompone nts
P r e t t y gr a phs b y D esm o s Gr a pher ( w w w . desm o s. o r g )
𝑉 𝑟 = 𝑍𝑍 1 𝑍𝑍 2 𝗌 2 ( Cou l om b )
𝑟
𝑉 𝑟 =
𝑍𝑍 1 𝑍𝑍 2 𝗌 2 𝑒
4𝜋 𝗌 0 𝑟
−𝑟𝑟
𝑎 ( S c r eened)
S toppi ng P ow e r C ompone nts
D ec r ea si ng sc r eeni ng s t r eng t h
U nsc r eened po t en t i a l
S t o p p in g P o w er Co m p o n en t s
• A s su m e
≈ 0
𝑑 𝐸
𝑑 𝑥
𝑟 𝑎𝑑 .
𝛾𝛾 =
4 𝑚 𝑀
𝑚 + 𝑀
2
• N uc l e a r stoppi ng pow e r form ul a ( W a s p. 47):
𝑑 𝐸
𝑑 𝑥
𝑛𝑢𝑐 𝑙 .
𝑁 𝜋 𝑍 1 𝑍 2 𝜀𝜀 4
=
𝐸 𝑖
𝑀 1 ln
𝑀 2
𝛾𝛾 𝐸 𝑖
𝑎
𝜀𝜀 2 𝛾𝛾 𝐸 2
4 𝐸 𝑖
𝑑 𝐸
𝑑 𝑥
𝑛𝑢𝑐 𝑙 .
𝑁 𝜋 𝑍 1 𝑍 2 𝜀𝜀 4
=
𝐸 𝑖
𝑀 1 ln
4 𝐸 2
𝑖
𝜀𝜀 2 𝐸 2
𝑎
𝑀 2
S t o p p in g P o w er Co m p o n en t s
• N ow t urn t o e l e c t roni c st oppi ng. T he B e t he - Bl o ch f o r m u la d e s c r ib e s th is w e ll:
𝑑 𝐸
𝑑 𝑥
2 𝑚 𝑒 𝑐 2 𝛽 2
𝐼 1 − 𝛽 2
4 𝜋 𝑘 2 𝑍 2 𝜀𝜀 4 𝑛 𝑒
−
= 0
𝑚 𝑒 𝑐 2 𝛽 2
ln
− 𝛽 2
𝛽 = 𝑣 𝑖 𝑜 𝑛
𝑐
; 𝑛 𝑒
= 𝑒 𝑙 𝑒𝑐 𝑡 𝑟 𝑜 𝑛 𝑑 𝑒 𝑛 𝑠 𝑖 𝑡 𝑦
• I i s t he m e a n e xc i t a t i on e ne r gy of t he m e di um
S toppi ng P ow e r C ompone nts
• I i s t he m e a n e xc i t a t i on e ne r gy of t he m e di um
Relat ive S t o p p in g Po w er s
• Pl ot / c om pa re S e /S n
𝑆
2 𝑀
ln 𝛾𝛾 𝑒 𝐸 𝑖
𝑒
𝑆 𝑛
= 2 𝐼
𝛾𝛾 𝐸 𝑖
𝐸 𝑑
𝑚 𝑒 𝑍 2 ln
• E l e c t roni c st oppi ng pow e r t a ke s ove r by fa c t ors of 10 2 - 10 4 for hi gh e ne r gy i ons…
• … w ha t a bout ne ut rons ?
Relat ive S t o p p in g Po w er s
H . P a u l. A I P C onf . P r oc . 1525 : 309 ( 2013)
© 2015 AIP Publishing LLC. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
Relat ive S t o p p in g Po w er s
W as, p . 84
© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
Relat ive S t o p p in g Po w er s
© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
W as, p . 84
• W h at d o es t h i s say ab o u t :
• E ne r gy de pos ition vs. e ne r gy a t high - E?
• S am e at l o w - E?
• W h en i s t h e m o st d am ag e d o n e t o a m at er i al ?
• Ex p l ai n d am ag e r at es v s. r an g es o f h eav y i o n s & f ast ne ut r ons ?
• …
• W ha t a bout t he r m a l ne ut r ons ?
It All S t ar t s w it h F r en kel P air s
• Fre nke l pa i r – p er f ect v acan cy / i n t e r stiti a l c om bi na t i on
• Produc e d ve ry w e l l by e l e c t ron ra di a t i on
V ac an c y
I n t e r s titia l
T h e Dam ag e Cascad e
• Fr e nke l p air s d o n ’ t s tay th at w ay !
• M a ny i de a s a bout how “d am ag e c ascad e ” ev o lv es
• C al l ed “cascad e” d u e t o s ubs e que nt , c ont i nui ng d am ag e ef f ect s
• W h at ’ s w r o n g w ith t h is
W a s , p . 128
p ictu r e?
© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
O r i gi na l c o nc ep t i o n o f da m a g e c a sc a de, sho w i ng pa t h o f F r enk el p a ir p r o d u c tio n
Dam ag e Cascad es Revisit ed
W a s , p . 128
• M a ny m ore form s of da m a ge a re possi bl e
• S i ngl e va canc i es & int e rs ti t ia l s n ot a lw a ys e ne r ge t i c a l l y f a vor a bl e
• F r e nke l pa i r s don’ t e xpl a i n obs e r ve d
da m a ge
© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
R e v i sed da m a g e c a sc a de a c c o u n tin g f o r c r y s t a llin ity
Dam ag e Cascad es Revisit ed
W a s , p . 128
P rim a r y K n o c k - o n A t o m ( P K A)
C o llis i o ns c a n k no c k a t o m s i n c l o se - pa c k ed
d ir e c tio n s
S t a b le , e n e r g e tic a lly fa v o r a b l e , fa s t - mo vi n g de f ec t s
H o w s t a bl e w o ul d t hi s be i n t he l o ng t er m ?
© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
Cascad e S t ag es – Ballist ics
• P u t s im p l y , a to m s g e t knoc ke d a round
• N o tim e to r e la x !
• ~ 10M e V ne ut rons m ove how fa st ?
• H ow l ong t o m ove one l at t i ce p ar am et er ?
© IOP Publishing, Inc. (US office). All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
Cascad e S t ag es – T h er m al S p ike
• T em p er at u r e r i s es ve ry l oc a l l y for a ve ry s hort t i m e
© IOP Publishing, Inc. (US office). All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
K . O. T r ach en ko , M . T . D o v e . E . K . H . S a l je . J. P h ys. C onde ns . Ma tte r , 13: 19 47 ( 2001 )
Cascad e S t ag es – Q u en ch
• H eat i s co n d u ct ed aw ay EX TREM E L Y q u i ck l y
© IOP Publishing, Inc. (US office). All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
K . O. T r ach en ko , M . T . D o v e . E . K . H . S a l je . J. P h ys. C ond. Ma tte r , 13: 194 7 ( 2001 )
Cascad e S t ag es – An n eal
D . S . Ai d h y e t a l. S c r i p ta Ma te r . , 60( 8) : 69 1 ( 2009 )
• M os t da m a ge “a nne a l s ” out , or re c om bi ne s/ ge t s sunk a w a y
• F or ne ut r ons & i ons , al m os t al l da m age an ne al s!
𝑡 = 0 𝑛𝑠 𝑡 = 2 . 45 𝑛𝑠
Courtesy of Elsevier, Inc., http://www.sciencedirect.com . Used with permission. Source: Aidhy, D. S. " Kinetically Driven Point-Defect Clustering in Irradiated MgO by Molecular-Dynamics Simulation ." Scripta Materialia 60, no. 8 (2009): 691-4.
S i m ul a t ed a nnea l i ng o f F r enk el pa i r s i n Mg O a t 1000K
T yp es o f Rad iat io n
• D i f fe re nt ra di a t i on produc e s di f fe re nt c a sc a de s
M a s s & C ha r g e
S t o ppi n g M ec ha ni sm
I nc r ea si ng mas s , s ame
c h a rg e
A ll e le c tr o n ic Mo s tly e le c tr o n ic
Mo s tly n u c le a r , s o m e c o u lo m b ic
M o der a t e m a ss, no c h a rg e
© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
E n tir e ly n u c le a r
S i mul a ti on M e thods – B C A
W a s , p . 134
• B in a r y C o llisio n A pproxi m a t i on
• U ses i nter at om i c pot e nt ia l s (lik e M D ) t o a l l ow a t om s t o m ove
• D oe s n ot rest r i ct c rys ta ll ini t y
• C r eat es co l l i s i on cascade s p r et t y w el l !
© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
S i mul a ti on M e thods – MD
• Sol ve 𝐹 = 𝑚 𝑎 for e ve ry pa i r of a t om s
• Int e rat om i c pot e nt i al s a re t he ke y t o in te r a c tio n s
• R ight : MD si m ulat i on o f 1ke V cascade i n i r on a t 100K
W a s , p . 139
0. 18
ps
9. 5
ps
© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
S im u lat io n M et h o d s – MD
ht t p: / / w w w . c m bi . r u. nl / r e doc k / i m a ge s / Le nna r dJ one s . png
• I n te r a to m ic p o te n tia ls ar e t he ke y t o i nt e ra c t i ons
• A ttr a c tiv e & r e p u ls iv e t e r m s
• L e nna r d - Jon e s ( L J) p o te n tia l w i de l y us e d
Courtesy of Bo Hanssen & Sander Jans. Used with permission.
L e n n ar d - Jo n e s P o t e n t i al
S im u lat io n M et h o d s – MD
J . Y u e t a l. J . M at er . C h em . , 19: 39 2 3 - 39 3 0 ( 2009)
• I n te r a to m ic p o te n tia ls ar e t he ke y t o i nt e ra c t i ons
• A ttr a c tiv e & r e p u ls iv e t e r m s
• L e nna r d- Jo n es ( L J) pot e nt i a l w i de l y us e d
© Royal Society of Chemistry. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
A t t r a c t i v e t er m s o f sel ec t ed po t en t i a l s ( d o t s ) , an d L J - m o d i f i e d v e r s i o n (l i n e s )
S im u lat io n M et h o d s – MD
A video is played in class to demonstrate the concept.
h ttp : / / w w w - pe r s ona l . um i c h. e du/ ~ gs w / m ov i e s . ht m l
22. 1 4 – Nu clear M ater ials Slid e 30
S im u lat io n M et h o d s – MD
A video is played in class to demonstrate the concept.
h ttp : / / w w w - pe r s ona l . um i c h. e du/ ~ gs w / m ov i e s . ht m l
S i mul a ti on M e thods – MC
• W i t h pre - de t e rm i ne d • Ex am p l e: TRI M di st ri but i o ns for s om e • R a ndom l y c hoos e
f eat u r es scat t er i ng an gles, ne w
• “R oll t he dice” t o sam ple f r om di s tribut i ons
• L e t r a ndom num be r s de t e r m i ne w he r e t hi ngs m ove a nd c ha nge
m ean f r ee p at hs
S i mul a ti on M e thods – MC
h ttp : / / w w w - pe r s ona l . um i c h. e du/ ~ gs w / m ov i e s . ht m l
© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
S i mul a ti on M e thods – R a te The or y
C . J . Or t iz, M . J . C a tu r l a . J . C om put e r - A i d ed M at er i al s D esi g n 14: 17 1 - 18 1 ( 2007)
• A s su m e r a te - c ont rol l e d e qua t i ons for de fe c t m i gra t i on, c l ust e ri ng
• O ft e n e m pl oys “m e a n fi e l d t he ory”
• G l os ses ove r de t ai l s t o accel er a t e t i m e
© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
S i mul a ti on M e thods – R a te The or y
C . J . Or t iz, M . J . C a tu r l a . J . C om put e r - A i d ed M at er i al s D esi g n 14: 17 1 - 18 1 ( 2007)
• H ow good i s t he a pproxi m a t i on? Is i t w ort h i t ?
© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
Dam ag e Cascad es – S umma r y
W a s , p . 140
• S p a n s m u ltip le tim e sc a le s
• S et s t he st age f o r de f ect m i grat i on t o hi ghe r l engt h scal es
© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
• S im ul a tion a ls o re qui re s m ul tis c a le m e t hods w i t h m uc h c re a tivi t y to g e t rig ht !
Disp lacem en t T h eo r y
• D e fi ne a ra t e of a t om i c di spl a c e m e nt s usi ng fl ux:
𝐸 𝑖
M a x i mu m e n e r g y a v ai l ab l e E n e r g y d e p e n d e n t f l u x d i s t r i b u t i o n
𝐸 𝑚𝑎 𝑥
𝑅 = �
0
𝑁 ∗ Φ
∗ 𝜎 𝐷
𝑑 𝐸 𝑖
𝐸 𝑖
𝑑 𝑖 𝑠𝑝 𝑙 .
R e a ct i o n r a t e 𝑚 3 − 𝑠𝑒 𝑐 M a t e r i al n u mb e r d e n s i t y
𝑎 𝑡 𝑜 𝑚𝑠
𝑚 3 D i spl a c em en t c r o ss sec t i o n
Disp lacem en t T h eo r y
• D e fi ne a ra t e of a t om i c di spl a c e m e nt s usi ng fl ux:
𝐸 𝑚𝑎 𝑥
𝐸 𝑖
𝐸 𝑖
𝑅 = �
0
𝑁 ∗ Φ
∗ 𝜎 𝐷
𝑑 𝐸 𝑖
𝑅 𝐷𝑃 𝐴
= = �
𝐸 𝑖
𝐸 𝑖
𝑁 𝑠 𝑒𝑐
𝐸 𝑚𝑎 𝑥
Φ
∗ 𝜎 𝐷
𝑑 𝐸 𝑖
0
Disp lacem en t T h eo r y
• D e fi ne a ra t e of a t om i c di spl a c e m e nt s usi ng fl ux:
𝐷 𝑃𝐴
= �
𝐸 𝑖
𝐸 𝑖
𝑠 𝑒𝑐
𝐸 𝑚𝑎 𝑥
Φ
∗ 𝜎 𝐷
𝑑 𝐸 𝑖
0
K now n or pre - de t e rm i ne d O nl y unknow n qua nt i t y
• D e ve l op e xpre s si on for di spl a c e m e nt c ross s e c t i on
Disp lacem en t T h eo r y
• D e fi ne a ra t e of a t om i c di spl a c e m e nt s usi ng fl ux:
𝐷 𝑃𝐴
= �
𝐸 𝑖
𝐸 𝑖
𝑠𝑒 𝑐
𝐸 𝑚𝑎 𝑥
Φ
∗ 𝜎 𝐷
𝑑 𝐸 𝑖
0
𝑇 𝑚𝑎 𝑥
P r o ba bi l i t y t ha t a n a t o m di spl a c ed b y a p a rtic le with e n e r g y E i le a v e s with r e c o il ener gy T ( di f f er en t i a l ener gy t r a ns f er c r o ss sec t i o n)
𝑣
𝑣 𝑇
𝜎 𝐷
= �
𝐸 𝑖
𝑇 𝑚𝑖 𝑛
𝜎 𝐸 𝑖 , 𝑇
𝑑 𝑇
N u m b e r of a t om i c d isp la c e m e n t s
• T i s t he PK A (di spl a c e d a t om ) re c oi l e ne r gy
f r o m a P KA w i th e n e r gy T
Disp lacem en t T h eo r y
𝜎 𝐷
𝑇 𝑚𝑎 𝑥
𝐸 𝑖
= �
𝑇 𝑚𝑖 𝑛
𝜎 𝐸 𝑖 , 𝑇
𝑑 𝑇
𝑣 𝑇
• A ssum e t he re i s som e t hre s hol d e ne r gy (E d ) be l ow w hi c h a di s pl a c e m e nt doe s not oc c ur:
𝑣 𝑇
= 0;
𝑇 <
𝐸 𝑑
• O th e r w is e a d is p la c e m e n t w ill o c c u r :
𝑣 𝑇 = 1; 𝑇 ≥ 𝐸 𝑑
Disp lacem en t T h eo r y
W a s , p. 74
𝜎 𝐷
𝑇 𝑚𝑎 𝑥
𝐸 𝑖
= �
𝑇 𝑚𝑖 𝑛
𝜎
𝑑 𝑇
𝐸 𝑖 , 𝑇
𝑣 𝑇
• Sha rp di spl a c e m e nt t hre shol d m ode l :
• W ha t d oe s th is m o d el n eg l ect ?
© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
Disp lacem en t T h eo r y
W a s , p. 75
𝜎 𝐷
𝑇 𝑚𝑎 𝑥
𝐸 𝑖
= �
𝑇 𝑚𝑖 𝑛
𝜎
𝑑 𝑇
𝐸 𝑖 , 𝑇
𝑣 𝑇
• A dd s om e s m oot hne ss t o t hi s func t i on:
• A c c ount s for a t o mi c v ib r a tio n s, im p u r itie s
© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
Disp lacem en t T h eo r y
• W ha t i s t hi s t hre shol d e ne r gy?
• L et ’ s est i m at e?
1. E ne r gy t o bre a k m e t a l s urfa c e bonds: ~ 5e V
2. Shi ft re m ove d a t om t o t he i nt e ri or: x2
3. S tu f f a to m in a n in te r stitia l s it e , a ss u m e n o tim e to r e la x th e la ttic e : x 2
4. D isp la c e m e n t isn ’ t in th e e a s ie s t d ir e c tio n : x 2
Disp lacem en t T h eo r y
W a s , p. 83
• W h a t is th is t hre shol d e ne r gy?
• N ot i c e a ny pa t t e rns i n t h e d at a?
• C rys ta l s truc tur e ?
• M e l t i ng poi nt ?
• S om e t hi ng e l s e ?
© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
Disp lacem en t T h eo r y
𝜎 𝐷
𝑇 𝑚𝑎 𝑥
𝐸 𝑖
= �
𝑇 𝑚𝑖 𝑛
𝜎
𝑑 𝑇
𝐸 𝑖 , 𝑇
𝑣 𝑇
• R e t urni ng t o v (T ) , a s sum e s uf fi c i e nt l y hi gh e ne r gy PK A s c a n do m ore da m a ge !
• E nt e r the Ki n ch i n - Pea s e (K - P) m ode l
Kin ch in - P ease M o d el
𝑣
2 𝑇
𝑇
𝜀𝜀
= �
𝑇 0
𝑣
𝑑 𝜀𝜀
• N o w s p l i t i n t o t h re e re le v a n t ra n g e s :
𝜀𝜀
E < 𝐸 𝑑 , 𝐸 𝑑 ≤ E < 2 𝐸 𝑑 , E > 2 𝐸 𝑑
𝑣
2 𝐸 𝑑
𝑇
= �
𝑇 0
𝑣
2 𝐸 𝑑
𝜀𝜀
𝑑 𝜀𝜀 + �
𝐸 𝑑
𝑣
𝑇
𝜀𝜀
𝑑 𝜀𝜀 + �
2𝐸 𝑑
𝑣
𝑑 𝜀𝜀
Kin ch in - P ease M o d el
𝑣
2 𝐸 𝑑
𝑇
= �
𝑇 0
𝑣
2 𝐸 𝑑
𝜀𝜀
𝑑 𝜀𝜀 + �
𝐸 𝑑
𝑣
𝑇
𝜀𝜀
𝑑 𝜀𝜀 + �
2𝐸 𝑑
𝑣
𝑑 𝜀𝜀
𝜀𝜀
• F i rs t t e rm i s 0 (e n e r g y t o o l o w t o d i s p l a c e )
• S e c o n d t e rm i s 1 (o n l y o n e d i s p l a c e m e n t p o s s i b l e )
𝜀𝜀
• T h i rd t e rm is s t e a d il y i n c re a s i n g
𝑣
2 𝐸 𝑑
𝑇
= �
𝑇 0
2𝐸 𝑑
0 𝑑 𝜀𝜀 + �
𝐸 𝑑
𝑇
1 𝑑 𝜀𝜀 + �
2𝐸 𝑑
𝑣
𝑑 𝜀𝜀
Kin ch in - P ease M o d el
• Fi na l form ul a t i on:
W a s , p. 77
© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
M o d if icat io n s t o K- P M ode l
W as, p . 84 H . P a u l. A I P C onf . P r oc . 1525 : 309 ( 2013)
• Is t he c ut of f e ne r gy re a l l y t rue ?
© Springer. All rights reserved. This content is excluded from © AIP Publishing LLC. All rights reserved. This content is excluded from our Creative our Creative Commons license. For more information, see Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ . http://ocw.mit.edu/help/faq-fair-use/ .
M o d if icat io n s t o K- P M ode l
W a s , p. 77
• A l l ow nuc l e a r st oppi ng pow e r t o di m i ni s h,
but not di sa ppe a r , af t er E c
• A lso a llo w e le c tr o n ic st oppi ng t o s t a rt t a ki ng ove r be fore E c
© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
M o d if icat io n s t o K- P M ode l
W a s , p. 102
• A c c ount for c rys t a l l i ni t y: C ha nne l i ng
• D i s p l aced at o m can t r av el t hrough e m pt y s pa c e b et w een l at t i ce p l an es
• N uc l e a r s t oppi ng ~ 0
• O nl y e l e c t r oni c s t oppi ng
© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
M o d if icat io n s t o K- P M ode l
W a s , p. 102
• A c c ount for c rys t a l l i ni t y: C ha nne l i ng
• D i s p l aced at o m can t r av el t hrough e m pt y s pa c e b et w een l at t i ce p l an es
• N uc l e a r s t oppi ng ~ 0
• O nl y e l e c t r oni c s t oppi ng
• L ot s of pa t hs t o c ha nne l !
© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
M o d if icat io n s t o K- P M ode l
W a s , p. 92
• C l ose - pa c ke d e ne r gy t ra nsfe r: Foc us i ng
• T hi nk pa c ke d bi l l i a r d ba l l s on a pool t a bl e
• A ssum e s ha rd sphe re c ol l i si ons
• W he re w oul d t hi s ha ppe n?
• Cl os e - pa cke d di r e c t i ons
• C r ow di ons
• D um bbe lls
© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
T h e Real σ D Is Ug ly!
W a s , p. 108
[Was, Gary S. Fundamentals of Radiation Materials Science , pp. 92] removed due to copyright restrictions.
Dam ag e Af t er t h e Cascad e
• W h at h ap p en s to d am ag e af t er t h e cas cad e?
• P r oduc t i on
• R e c om bi na t i on
• A bs or pt i on a t s i nks
• M ig ra tio n
P o in t Def ect Balan ce
C ha nge = G ai n – L o s s
• W h a t a r e th e p o s sib le g a in te r m s?
• D i s pl a c e m e nt pr oduc t i on
• R e a c t i on pr oduc t i on
• W h a t a r e th e p o s sib le lo ss te r m s?
• R e c om bi na t i on
• L os s t o s i nks
• D i f f us i on
P o in t Def ect Balan ce
C ha nge = G ai n – L o s s
• W h a t a r e th e p o s sib le sin k s?
• G r a i n bounda r i e s
• D is lo c a tio n s
• Im p u ritie s
• F r ee su r f aces
• In c o h e re n t p re c ip ita t e s
G ain T er m s
• D e fe c t Produc t i on R a t e :
𝐷 𝑃𝐴
𝑠 𝑒𝑐
𝐾 0 =
Fr o m SR IM , e t c .
∗ 𝜀𝜀
D amag e c as c ad e e f f i c i e n c y
• R e a c t i on Produc t i on R a t e :
𝑛
𝑅 0 = � 𝑅 𝑥 𝑛 𝑑
𝑑 = 1
Ig n o r e … f o r n o w
L o ss T er m s: Reco m b in at io n
• Int roduc e som e re c om bi na t i on ra t e c ons t a nt : 𝐾 𝑖𝑣
• Rel at e t o t h e r el ev an t d ef ect co n cen t r at i o n s :
𝐶 𝑖 = 𝐼 𝑛𝑡 𝑒 𝑟 𝑠𝑡 𝑖𝑡 𝑖𝑎𝑙 𝐶 𝑜 𝑛 𝑐 𝑒 𝑛 𝑡𝑟𝑎 𝑡𝑖 𝑜 𝑛
𝐶 𝑣 = 𝑉 𝑎𝑐 𝑎𝑛𝑐 𝑦 𝐶 𝑜 𝑛 𝑐 𝑒 𝑛 𝑡𝑟𝑎 𝑡𝑖 𝑜 𝑛
𝜕 𝐶 𝑖 , 𝑣
𝜕 𝑡
𝑅 𝑒𝑐 𝑜𝑚 𝑏 𝑖 𝑛 𝑎 𝑡 𝑖 𝑜𝑛
= 𝐾 𝑖𝑣 𝐶 𝑖 𝐶 𝑣
L o ss T er m s: S in ks
• For e a c h si nk, de fi ne a si nk s t re ngt h: 𝐾 𝑠
• R e l a t e s i nk ra t e t o c onc e nt ra t i ons of de fe c t s 𝐶 𝑖 , 𝑣
a nd si nks:
𝜕 𝐶 𝑖 , 𝑣
𝜕 𝑡
𝑆 𝑖 𝑛 𝑘 𝑠
𝐴 𝑙𝑙 𝑆 𝑖 𝑛 𝑘 𝑠
= − �
𝑠 = 1
𝐾 𝑠 𝐶 𝑖 , 𝑣 𝐶 𝑠
L o ss T er m s: Dif f u sio n
• W e a l re a dy know t hi s e qua t i on from Fi c k ’ s L a w :
𝜕 𝐶 𝑖 , 𝑣
𝜕 𝑡
𝐷 𝑖 𝑓 𝑓 𝑢 𝑠 𝑖𝑜 𝑛
= 𝛻 𝐷 𝑖 , 𝑣 𝛻 𝐶 𝑖 , 𝑣
Co m b in in g T er m s:
𝜕 𝐶 𝑖 , 𝑣
=
𝜕 𝑡
𝐴 𝑙𝑙 𝑆 𝑖 𝑛 𝑘 𝑠
𝐷 𝑃 𝐴
𝑠𝑒 𝑐
∗ 𝜀𝜀 − 𝐾 𝑖 𝑣 𝐶 𝑖 𝐶 𝑣 − �
𝑠 = 1
𝐾 𝑠 𝐶 𝑖 , 𝑣 𝐶 𝑠 + 𝛻 𝐷 𝑖 , 𝑣 𝛻 𝐶 𝑖 , 𝑣
Neg lec t S p at ia l V ar ian ce:
𝜕 𝐶 𝑖
𝜕 𝑡
= 𝐾 0
− 𝐾 𝑖𝑣 𝐶 𝑖
𝐶 𝑣
𝐴 𝑙𝑙 𝑆 𝑖 𝑛 𝑘 𝑠
− �
𝑠 = 1
𝐴 𝑙𝑙 𝑆 𝑖 𝑛 𝑘 𝑠
𝐾 𝑠 𝐶 𝑖 𝐶 𝑠
𝜕 𝐶 𝑖
𝜕 𝑡
= 𝐾 0
− 𝐾 𝑖𝑣 𝐶 𝑖
𝐶 𝑣
− �
𝑠 = 1
𝐾 𝑠 𝐶 𝑣
𝐶 𝑠
No t e o n V acan cy Co n c.
• 𝐶 𝑣 m us t be a dj ust e d t o a c c ount for t he rm a l v acan ci es :
𝐶 ∗ = 𝐶 − 𝐶 0
𝑣 𝑣 𝑣
Ad ju s t e d v ac an c y c o n c e n t r a t i o n T h e r mal v ac an c y c o n c e n t r a t i o n
T o t al v ac an c y c o n c e n t r a t i o n
• W hy do w e i gnore t hi s for i nt e rs t i t i a l s ?
• E qui l i br i um i nt e r s t i t i a l c onc e nt r a t i on i s s o l ow !
E q u ilib r iu m Def ect Co n c.
W as , p . 2 0 0
[Was, Gary S . Fundamentals of Radiation Materials Science , p. 20 0 . ISBN: 9783540494713] removed due to copyright restrictions.
L im it in g Cases o f P o in t Def ect Kin et ic E q u at io n s
• (1) A ssum e l ow t e m pe ra t ure , low sink de nsi t i e s
𝜕 𝐶 𝑣
𝜕 𝑡
= 𝐾 0
− 𝐾 𝑖𝑣 𝐶 𝑖
𝐶 𝑣
𝐴 𝑙𝑙 𝑆 𝑖 𝑛 𝑘 𝑠
− �
𝑠 = 1
𝐴 𝑙𝑙 𝑆 𝑖 𝑛 𝑘 𝑠
𝐾 𝑠 𝐶 𝑣
𝐶 𝑠
+ 𝛻 𝐷 𝑣 𝛻 𝐶 𝑣
𝜕 𝐶 𝑖
𝜕 𝑡
= 𝐾 0
− 𝐾 𝑖𝑣
𝐶 𝑖 𝐶 𝑣
− �
𝑠 = 1
𝐾 𝑠
𝐶 𝑖
𝐶 𝑠
+ 𝛻 𝐷 𝑖 𝛻 𝐶 𝑖
Case 1: L o w T , L o w C s
W as , p . 1 9 4
[Was, Gary S . Fundamentals of Radiation Materials Science , p. 194 . ISBN: 9783540494713] removed due to copyright restrictions.
Case 1: L o w T , L o w C s
W as , p . 1 9 4
[Was, Gary S . Fundamentals of Radiation Materials Science , p. 194 . ISBN: 9783540494713] removed due to copyright restrictions.
Case 1: L o w T , L o w C s
W as , p . 1 9 4
[Was, Gary S . Fundamentals of Radiation Materials Science , p. 194 . ISBN: 9783540494713] removed due to copyright restrictions.
Case 1: L o w T , L o w C s
W as , p . 1 9 4
[Was, Gary S . Fundamentals of Radiation Materials Science , p. 194 . ISBN: 9783540494713] removed due to copyright restrictions.
Case 1: L o w T , L o w C s
W as , p . 1 9 4
[Was, Gary S . Fundamentals of Radiation Materials Science , p. 194 . ISBN: 9783540494713] removed due to copyright restrictions.
W h at ’ s In a S in k T er m ?
𝐷 𝑖 + 𝐷 𝑣
𝐾 𝑖𝑣 = 4 𝜋 𝑟 𝑖𝑣
Si n k St r e n g t h In t e r ac t i o n r ad i u s D i f f u s i v i t i e s
𝐷 𝑖
𝐾 𝑖 𝑠 = 4 𝜋 𝑟 𝑖 𝑠
𝐷 𝑣
𝐾 𝑣 𝑠 = 4 𝜋 𝑟 𝑣 𝑠
Case 2: L o w T , M ed iu m C s
W as , p . 1 9 7
[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,
200. ISBN: 9783540494713] removed due to copyright restrictions.
Case 2: L o w T , M ed iu m C s
W as , p . 1 9 7
[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,
200. ISBN: 9783540494713] removed due to copyright restrictions.
Case 2: L o w T , M ed iu m C s
W as , p . 1 9 7
[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,
200. ISBN: 9783540494713] removed due to copyright restrictions.
Case 2: L o w T , M ed iu m C s
W as , p . 1 9 7
[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,
200. ISBN: 9783540494713] removed due to copyright restrictions.
Co m p ar e Cases 1 & 2
W a s , p p . 194, 197
[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,
200. ISBN: 9783540494713] removed due to copyright restrictions.
Case 3: L o w T , Hig h C s
W as , p . 1 9 8
[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,
200. ISBN: 9783540494713] removed due to copyright restrictions.
Case 3: L o w T , Hig h C s
W as , p . 1 9 8
[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,
200. ISBN: 9783540494713] removed due to copyright restrictions.
Case 3: L o w T , Hig h C s
W as , p . 1 9 8
[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,
200. ISBN: 9783540494713] removed due to copyright restrictions.
Case 3: L o w T , Hig h C s
W as , p . 1 9 8
[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,
200. ISBN: 9783540494713] removed due to copyright restrictions.
Case 3: L o w T , Hig h C s
W as , p . 1 9 8
[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,
200. ISBN: 9783540494713] removed due to copyright restrictions.
Co m p ar e Cases 2 & 3
W a s , p p . 197, 198
[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,
200. ISBN: 9783540494713] removed due to copyright restrictions.
Case 4: Hig h T em p er at u r e
W as , p . 2 0 0
[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,
200. ISBN: 9783540494713] removed due to copyright restrictions.
Case 4: Hig h T em p er at u r e
W as , p . 2 0 0
[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,
200. ISBN: 9783540494713] removed due to copyright restrictions.
Case 4: Hig h T em p er at u r e
W as , p . 2 0 0
[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,
200. ISBN: 9783540494713] removed due to copyright restrictions.
Case 4: Hig h T em p er at u r e
W as , p . 2 0 0
[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,
200. ISBN: 9783540494713] removed due to copyright restrictions.
Co m p ar e Cases 3 & 4
W a s , p p . 198, 200
[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,
200. ISBN: 9783540494713] removed due to copyright restrictions.
W h er e Do es T h is M o d el Br eak Do w n ?
• N e a r sinks
• Si nks w i t h bi a se s for de fe c t s
• In te ra c t io n ra d ii
• D ef ect - de pe nde nt s i nks
• Ti m e - va ri a nt sinks
• Ti m e - va ri a nt a nyt hi ng e l se
• Spat i al v ari anc e
Ret u r n S p at ial V ar ian ce
𝜕 𝐶 𝑣
𝜕 𝑡
= 𝐾 0
− 𝐾 𝑖𝑣 𝐶 𝑖
𝐶 𝑣
𝑆 𝑖 𝑛 𝑘 𝑠
− �
𝑠 = 1
𝑆 𝑖 𝑛 𝑘 𝑠
𝐾 𝑠 𝐶 𝑣
𝐶 𝑠
+ 𝛻 𝐷 𝑣 𝛻 𝐶 𝑣
𝜕 𝐶 𝑖
𝜕 𝑡
= 𝐾 0
− 𝐾 𝑖𝑣
𝐶 𝑖 𝐶 𝑣
− �
𝑠 = 1
𝐾 𝑠
𝐶 𝑖
𝐶 𝑠
+ 𝛻 𝐷 𝑖 𝛻 𝐶 𝑖
• W h a t ’ s in a D a nyw a y?
Rad iat io n En h an ced Dif f u sio n
• D a ( d i f f u si v i t y o f a t y p e o f at o m ) i s a su m o f al l r el ev an t ef f ect s
• S om e a r e tur ne d on by r a dia tion ( in t e r s t i t i a l c y )
• S o m e ar e en h an ced b y r ad i at i o n ( v acan cy )
𝐷 𝑒 𝑓 𝑒 𝑐𝑡 𝑠
𝐷 𝑎 = � 𝑓 𝐷 𝑑 𝐶
𝑑 𝑎 𝑑
𝑖
2 𝑣
𝑎
2 𝑣
𝑑 = 1
𝐷 𝑎 = 𝑓
𝐷 𝑣 𝐶
+ 𝑓 𝐷 𝑖 𝐶
+ 𝑓
𝐷 2 𝑣 𝐶
𝑉
𝑎
𝑣
𝑖
𝑎
+ 𝑓
𝐷 𝑐 𝑟𝑜 𝑐𝑐 𝑑 𝑖 𝑜 𝑛 𝐶
+ 𝑓
𝐷 𝑑 𝑢 𝑚𝑏𝑏𝑒 𝑙𝑙 𝐶 …
𝑐 𝑟𝑜 𝑐𝑐 𝑑 𝑖 𝑜𝑛 𝑎
𝑐 𝑟𝑜 𝑐𝑐 𝑑 𝑖 𝑜 𝑛
𝑑 𝑢 𝑚𝑏𝑏𝑒 𝑙𝑙 𝑎
𝑑 𝑢 𝑚𝑏𝑏𝑒 𝑙𝑙
Co m p o n en t s o f Rad iat io n E n h an ced Dif f u sio n
W as , p . 2 0 7
[Was, Gary S . Fundamentals of Radiation Materials Science , p. 207. ISBN: 9783540494713] removed due to copyright restrictions.
Ret u r n in g Sp at ial Dep en d en ce: Case S t u d y
• 1D i on i rra di a t i on, i nc l ude s :
• A f r ee su r f ace
• D is lo c a tio n s
• T h er m al v acan ci es ( n o t i n t er st i t i a l s)
• D if f e rin g in te ra c t i o n ra d ii
• S pa t i a l l y de pe nde nt de f e c t pr oduc t i on
• In je c te d in te rs ti t i a l s
E xp er im en t al Evid en ce
• 99. 995% Fe
• 3.5M e V F e +2 sel f - i ons , 450C , ~ 1m A be a m c ur r e nt
F
/ A 1
8
C D
• 1. 8 · 10 -3 dpa /s
• P eak d os es:
• 35, 75, 105dpa
F
200 keV 140 keV 10 keV
1. 7 M eV
1 M eV
• C ha r act er i za t i on:
/
A
8
• TEM
C
D
• I m ag e an al y s i s
Courtesy of Lin Shao. Used with permission.
E xp er im en t al Evid en ce
• V o id s w e llin g is obs e rve d be l ow m a t e ri a l surfa c e
• N o s w e l l i ng obs e r ve d be yond 1μ m de pt h
• R a nge of F e +2 i ons i s
~ 1.5μ m
L . S ha o e t a l . ( 2014)
S u r fa c e
B e am d ir e c tio n
(a ) 35 D PA
1 m
(b ) 75 D PA
1 m
(c) 105 D PA
1 m
Courtesy of Lin Shao. Used with permission.
E xp er im en t al Evid en ce
• Co r r el at e d am ag e (poi nt de fe c t c re a t i on) w ith in je c te d in te r stitia ls
L . S ha o e t a l . ( 2014)
Courtesy of Lin Shao. Used with permission.
E xp er im en t al Evid en ce
• Im a ge a na l ys i s use d t o e s tim a te v o id f r a c tio n vs. d i st a nc e
• S qua r e s i de nt i f y voi ds
L . S ha o e t a l . ( 2014)
Courtesy of Lin Shao. Used with permission.
E xp er im en t al Evid en ce
• Co r r el at e d am ag e 6
(poi nt de fe c t c re a t i on) 5
S w el l i ng ( % )
w ith in je c te d 4
in te r stitia ls 3
• V oi ds not obs e r ve d
2
n ear i n j ect ed
in te rs ti t ia l s 1
0
L . S ha o e t a l . ( 2014)
DP A
35 D P A
70 D P A
105 D P A
Fe
s el f i ons
0 400 800 1200 1600
F e dept h ( nm )
Courtesy of Lin Shao. Used with permission.
M o r e Exp er im en t al E vid en ce
• O c c urs i n c om pl e x a llo y s a s w e ll
• T hi s i s a hi ghl y ge ne ra l
phe nom e non!
© Lin Shao. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
F . A . Ga r ne r , M . B . T ol ocz k o , A . C e r t a i n, L . S ha o , J . G i ga x , C . W e i , “ Im pa c t o f the Inj e c t e d In t e r s ti ti a l E f f e c t o n Io n - Induc e d V o i d S w e l l i ng
i n A us t e ni ti c a nd F e r r it ic - O D S A l l o y s , ” T M S P o s t e r ( 2014)
M ode l i ng & S i mul a ti on E xp lain s t h e M ech an ism
• U se d SR IM * c om put e r c ode t o cal cu l at e d am ag e r at e ( dpa / s ) a nd im p la n ta tio n r a te ( F e/ cm 3 - s)
*S t op p i n g R an g e o f Ion s i n M at t e r
M ode l i ng & S i mul a ti on E xp lain s t h e M ech an ism
• Si m ul t a ne ousl y pl ot da m a ge (V + I) a nd i nj e c t e d in te r stitia ls ( I o n ly )
D am ag e
F e i n j ec t
M o d elin g & S im u lat io n E xp lain s t h e M ech an ism
• U se SR IM da t a a s forc i ng func t i on for poi nt de fe c t b al an ce eq u at i o n s
• A s su m p tio n s :
• E M I = 0 . 1 8 e V ( < 1 1 0 > s p l i t d u m b b e l l i s d o m i n a n t i n t e r s t i t i a l d ef ect )
• E M V = 0. 66e V ( a t om i c a l l y pur e i r on) or 1. 1e V ( r e a l i s t i c pur i t y )
• N eg l ect f o r m at i o n o f l ar g er v acan cy o r i n t er s t i t i al d ef ect s
• D e f e c t s c a n a nni hi l a t e by di f f us i on , ne t w or k di s l oc a t i on s , i n co h er en t p r eci p i t at es , n u cl eat ed v o i d s , r eco m b i n at i o n , f r ee s u r f a c e a n n i h i l a t i o n
S i mul a ti on Fr a me wor k
• MOOS E – M ul t i physi c s O b je c t O r ie n te d S im u la tio n E nvi ronm e nt
• G re a tly s im pl if ie s c re a ting s im ul a tions q ui c kl y
• S eam l ess a bil i t y t o f ull y co upl e O D E s & P D E s on a f i nit e el em ent f r am ew ork
• R ecen t l y op e n s ou r c e d: w w w .m oos e f r am e w or k.c om
OD E – O r d in ar y d if f e r e n t ial e q u a t io n PDE – P ar t ial d if f e r e n t ial e q u a t io n
M ode l i ng & S i mul a ti on E xp lain s t h e M ech an ism
• Supe ri m pos e bot h poi nt de fe c t pl ot s
D e fe c t Co nc e n - tr a ti o n s ( # / nm 3 )
I n t e r s t it ials V ac an c ie s
D e p t h ( nm )
M o d elin g & S im u lat io n E xp lain s t h e M ech an ism
• P lo t e x c e s s in te rs titia l fra c tio n
D e p t h ( nm )
E xc e s s In t e r s ti ti a l s ( f r a ct i on )
Qua nti fy i ng the I nj e c te d In t er st it ial E f f ect
• A r tific ia lly “t urn o f f” i nj e c t e d in te r stitia ls
• R un s i de - by - sid e s im u la tio n s , a ll o t h er p ar am et er s eq u al
S c r e e ns ho t s ho w i ng di f f e r e nc e i n i nput f i l e s
Resu lt s – P o in t Def ect s
3. 5 M e V F e +2 , 1 m A , 1 m m 2 b e a m , 450C , E M V = 0. 66e V
P o in t d e f e c ts f o llo w S R I M f o r c i ng func t i o n
P o in t d e f e c ts d o n o t q u it e f o llo w S R I M f o r c i ng func t i o n
I n t e r s t it ials V a c a nci es Dam ag e R a t e
D e p t h ( nm ) D e p t h ( nm )
Wi thout in j e c t e d in t e r s t it i a ls Wi th in j e c t e d in t e r s t it ia l s
Res ults – V ac ancy Supe rsa tura t io n
3. 5 M e V F e +2 , 1 m A , 1 m m 2 b e a m , 450C , E M V = 0. 66e V
S uper s a t .
Dam ag e R
P ea k s nea r m a x i m um da m a g e r egi o n
B im o d a l d is trib u tio n , s h if t e d t o th e le f t b y 100n m
S uper s a t Dam ag e R a t e
D e p t h ( n
D e p t h ( n
D e p t h ( n m ) D e p t h ( n m )
Wi thout in j e c t e d in t e r s t it i a ls Wi th in j e c t e d in t e r s t it ia l s
Resu lt s – V o id Nu cleat io n Rat e
3. 5 M e V F e +2 , 1 m A , 1 m m 2 b e a m , 450C , E M V = 0. 66e V
C l ea r l y pea k s a t m a x i m um da m a g e r egi o n
V er y bi m o da l di s t r i but i o n, shi ft ed t o t he l e f t b y 100n m
Vo i d N ucl .
Dam ag e R a
Vo i d N uc l Dam ag e R a t e
m
D e p t h ( n
m
D e p t h ( n
D e p t h ( n ) D e p t h ( n m )
Wi thout in j e c t e d in t e r s t it i a ls Wi th in j e c t e d in t e r s t it ia l s
Co m p ar e w it h Exp er im en t s
S w el l i ng ( % )
3. 5 M e V F e +2 , 1 m A , 1 m m 2 b e a m , 450C , E M V = 0. 66e V
6
5
DP A
35 D P A
70 D P A
105 D P A
4
3
Fe
s el f i ons
2
1
0
0
400
800
1200
1600
F e dept h ( nm )
D e p t h ( nm )
D e p t h ( nm )
I nj ec t ed I n t er s ti t i a l s
Wi t h / W i thout
S i m ul a ti on v s . E x p e r i m e n ts
E xp lan at io n
• S m al l s p at i al d ef ect i m b al an ce h as l ar g e ch an g e i n v acan cy s upe rs a t ura t i on a t p e a k in je c te d in te r stitia l lo c a tio n s
• T hi s i n t urn af fe c t s v oi d nuc l e at i on rat e
MIT OpenCourseWare http://ocw.mit.edu
2 2.14 Materials in Nuclear Engineering
Spring 20 1 5
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .