R adiati on S topping P owe r , D am age C ascade s, D isplacem e nt and the D P A

L ear n in g O b ject ives

Pre di c t st oppi ng pow e r of ra di a t i on a s func t i ons of m a t e ri a l , type , e ne r gy of ra di a t i on

Co n cep t u al i ze r ad i at i o n d am ag e cas cad es , s t ag es , a nd e vol ut i on i n t i m e

E s tim a te th e q u a n tita tiv e d isp la c e m e n t r a te s f r o m ra di a t i on, a nd de fi ne t he D P A

T ra c k t he bui l dup of ra di a t i on poi nt de fe c t s a s func t i ons of t e m pe ra t ure , de fe c t c onc e nt ra t i on

Bu ild in g Up t o Rad iat io n

E ffe c ts

S ho r t & Y i p. C u rre n t O p in io n s in S o lid S t a t e M a t e r ia l S c ie n c e ( 2015)

w e l l be he r e n e x t w e e k!

W e a r e h er e…

Courtesy of Elsevier, Inc., http://www.sciencedirect.com . Used with permission.

Source: Short, M. , and S. Yip. " Materials A ging at the M esoscale: Kinetics of T hermal, S tress, R adiation A ctivations ." Current Opinion in Solid State and Materials Science 19, no. 4 (2015): 245-52.

22. 14 Nu clear M ater ials Slid e 3

S t o p p in g P o w er

M o r e en er g et i c p ar t i cl es do m ore da m a ge to a poi nt

but how m uc h?

C ha r ge vs. no c ha r ge ?

W ha t a bout da m a ge vs. m ean f r ee p at h ?

h t tp: / / w w w .s r i m .o r g

http://www.srim.org/SRIM/SRIMPICS/STOP01/STOP0126.gif

Courtesy of James F. Ziegler. Used with permission.

St o p p i n g p o w e r o f p r o t o n s i n i r o n

Co u lo m b ic/Nu clear S t o p p in g P o w er

St oppi ng P ow e r i s de fi ne d a s di f fe re nt i a l e ne r gy l oss a s a func t i on of e ne r gy:

𝑁 𝑆

𝜕 𝐸

𝐸

=

𝜕𝑥

Se pa ra bl e c om pone nt s due t o nuc l e a r (s c re e ne d nuc l e us C oul om bi c ), e l e c t roni c , a nd ra di a t i ve t e rm s:

𝐸

𝑁 𝑆

=

𝜕 𝐸

𝜕𝑥

𝑛𝑢𝑐 𝑙 .

𝜕 𝐸

𝜕𝑥

𝑒 𝑙 𝑒 𝑐 .

𝜕 𝐸

𝜕𝑥

𝑟 𝑎𝑑 .

R a nge

0

𝑆

𝐸

Int e gra t e i nve rs e of s t oppi ng

So u r c e: W i k i med i a C o mmo n s

pow e r ove r t he e ne r gy

ra nge of t he pa rt i c l e : 𝑅 𝑎𝑛𝑔 𝑒

N o t a ll p a r tic le s h a v e i d en t i cal r an g e, str a g g lin g d e sc r ib e s th is v a r ia tio n

= 𝐸 𝑚𝑎 𝑥 1

𝑑 𝐸

R a n ge

This image is in the public domain.

S t o p p in g P o w er Co m p o n en t s

H . P a u l. A I P C onf . P r oc . 1525 : 309 ( 2013)

N uc l e a r stoppi ng pow e r: First a ssum e C oul om bi c n u c le u s in te r a c tio n s , d e s c r ib e in te r a to m ic p o te n tia l:

𝑉

= 𝑍𝑍 1 𝑍𝑍 2 𝗌 2

𝑟

𝑟

(1/ r de pe nde nc e )

Pos i t i ve nuc l e us sc re e ne d by ne ga t i ve e l e c t ron c l oud:

𝑟

𝑎

𝑍 1 𝑍 2 𝜀𝜀 2

𝑟

𝑉

=

4 𝜋 𝜀𝜀 0 𝑟

𝑒

E ff e c t i ve s c r e e n i n g r ad i u s

S toppi ng P ow e r C ompone nts

P r e t t y gr a phs b y D esm o s Gr a pher ( w w w . desm o s. o r g )

𝑉 𝑟 = 𝑍𝑍 1 𝑍𝑍 2 𝗌 2 ( Cou l om b )

𝑟

𝑉 𝑟 =

𝑍𝑍 1 𝑍𝑍 2 𝗌 2 𝑒

4𝜋 𝗌 0 𝑟

−𝑟𝑟

𝑎 ( S c r eened)

S toppi ng P ow e r C ompone nts

D ec r ea si ng sc r eeni ng s t r eng t h

U nsc r eened po t en t i a l

S t o p p in g P o w er Co m p o n en t s

A s su m e

0

𝑑 𝐸

𝑑 𝑥

𝑟 𝑎𝑑 .

𝛾𝛾 =

4 𝑚 𝑀

𝑚 + 𝑀

2

N uc l e a r stoppi ng pow e r form ul a ( W a s p. 47):

𝑑 𝐸

𝑑 𝑥

𝑛𝑢𝑐 𝑙 .

𝑁 𝜋 𝑍 1 𝑍 2 𝜀𝜀 4

=

𝐸 𝑖

𝑀 1 ln

𝑀 2

𝛾𝛾 𝐸 𝑖

𝑎

𝜀𝜀 2 𝛾𝛾 𝐸 2

4 𝐸 𝑖

𝑑 𝐸

𝑑 𝑥

𝑛𝑢𝑐 𝑙 .

𝑁 𝜋 𝑍 1 𝑍 2 𝜀𝜀 4

=

𝐸 𝑖

𝑀 1 ln

4 𝐸 2

𝑖

𝜀𝜀 2 𝐸 2

𝑎

𝑀 2

S t o p p in g P o w er Co m p o n en t s

N ow t urn t o e l e c t roni c st oppi ng. T he B e t he - Bl o ch f o r m u la d e s c r ib e s th is w e ll:

𝑑 𝐸

𝑑 𝑥

2 𝑚 𝑒 𝑐 2 𝛽 2

𝐼 1 𝛽 2

4 𝜋 𝑘 2 𝑍 2 𝜀𝜀 4 𝑛 𝑒

= 0

𝑚 𝑒 𝑐 2 𝛽 2

ln

𝛽 2

𝛽 = 𝑣 𝑖 𝑜 𝑛

𝑐

; 𝑛 𝑒

= 𝑒 𝑙 𝑒𝑐 𝑡 𝑟 𝑜 𝑛 𝑑 𝑒 𝑛 𝑠 𝑖 𝑡 𝑦

I i s t he m e a n e xc i t a t i on e ne r gy of t he m e di um

S toppi ng P ow e r C ompone nts

I i s t he m e a n e xc i t a t i on e ne r gy of t he m e di um

Relat ive S t o p p in g Po w er s

Pl ot / c om pa re S e /S n

𝑆

2 𝑀

ln 𝛾𝛾 𝑒 𝐸 𝑖

𝑒

𝑆 𝑛

= 2 𝐼

𝛾𝛾 𝐸 𝑖

𝐸 𝑑

𝑚 𝑒 𝑍 2 ln

E l e c t roni c st oppi ng pow e r t a ke s ove r by fa c t ors of 10 2 - 10 4 for hi gh e ne r gy i ons…

w ha t a bout ne ut rons ?

Relat ive S t o p p in g Po w er s

H . P a u l. A I P C onf . P r oc . 1525 : 309 ( 2013)

© 2015 AIP Publishing LLC. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

Relat ive S t o p p in g Po w er s

W as, p . 84

© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

Relat ive S t o p p in g Po w er s

© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

W as, p . 84

W h at d o es t h i s say ab o u t :

E ne r gy de pos ition vs. e ne r gy a t high - E?

S am e at l o w - E?

W h en i s t h e m o st d am ag e d o n e t o a m at er i al ?

Ex p l ai n d am ag e r at es v s. r an g es o f h eav y i o n s & f ast ne ut r ons ?

W ha t a bout t he r m a l ne ut r ons ?

It All S t ar t s w it h F r en kel P air s

Fre nke l pa i r p er f ect v acan cy / i n t e r stiti a l c om bi na t i on

Produc e d ve ry w e l l by e l e c t ron ra di a t i on

V ac an c y

I n t e r s titia l

T h e Dam ag e Cascad e

Fr e nke l p air s d o n t s tay th at w ay !

M a ny i de a s a bout how “d am ag e c ascad e ev o lv es

C al l ed “cascad e” d u e t o s ubs e que nt , c ont i nui ng d am ag e ef f ect s

W h at s w r o n g w ith t h is

W a s , p . 128

p ictu r e?

© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

O r i gi na l c o nc ep t i o n o f da m a g e c a sc a de, sho w i ng pa t h o f F r enk el p a ir p r o d u c tio n

Dam ag e Cascad es Revisit ed

W a s , p . 128

M a ny m ore form s of da m a ge a re possi bl e

S i ngl e va canc i es & int e rs ti t ia l s n ot a lw a ys e ne r ge t i c a l l y f a vor a bl e

F r e nke l pa i r s don’ t e xpl a i n obs e r ve d

da m a ge

© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

R e v i sed da m a g e c a sc a de a c c o u n tin g f o r c r y s t a llin ity

Dam ag e Cascad es Revisit ed

W a s , p . 128

P rim a r y K n o c k - o n A t o m ( P K A)

C o llis i o ns c a n k no c k a t o m s i n c l o se - pa c k ed

d ir e c tio n s

S t a b le , e n e r g e tic a lly fa v o r a b l e , fa s t - mo vi n g de f ec t s

H o w s t a bl e w o ul d t hi s be i n t he l o ng t er m ?

© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

Cascad e S t ag es Ballist ics

P u t s im p l y , a to m s g e t knoc ke d a round

N o tim e to r e la x !

~ 10M e V ne ut rons m ove how fa st ?

H ow l ong t o m ove one l at t i ce p ar am et er ?

© IOP Publishing, Inc. (US office). All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

Cascad e S t ag es T h er m al S p ike

T em p er at u r e r i s es ve ry l oc a l l y for a ve ry s hort t i m e

© IOP Publishing, Inc. (US office). All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

K . O. T r ach en ko , M . T . D o v e . E . K . H . S a l je . J. P h ys. C onde ns . Ma tte r , 13: 19 47 ( 2001 )

Cascad e S t ag es Q u en ch

H eat i s co n d u ct ed aw ay EX TREM E L Y q u i ck l y

© IOP Publishing, Inc. (US office). All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

K . O. T r ach en ko , M . T . D o v e . E . K . H . S a l je . J. P h ys. C ond. Ma tte r , 13: 194 7 ( 2001 )

Cascad e S t ag es An n eal

D . S . Ai d h y e t a l. S c r i p ta Ma te r . , 60( 8) : 69 1 ( 2009 )

M os t da m a ge “a nne a l s out , or re c om bi ne s/ ge t s sunk a w a y

F or ne ut r ons & i ons , al m os t al l da m age an ne al s!

𝑡 = 0 𝑛𝑠 𝑡 = 2 . 45 𝑛𝑠

Courtesy of Elsevier, Inc., http://www.sciencedirect.com . Used with permission. Source: Aidhy, D. S. " Kinetically Driven Point-Defect Clustering in Irradiated MgO by Molecular-Dynamics Simulation ." Scripta Materialia 60, no. 8 (2009): 691-4.

S i m ul a t ed a nnea l i ng o f F r enk el pa i r s i n Mg O a t 1000K

T yp es o f Rad iat io n

D i f fe re nt ra di a t i on produc e s di f fe re nt c a sc a de s

M a s s & C ha r g e

S t o ppi n g M ec ha ni sm

I nc r ea si ng mas s , s ame

c h a rg e

A ll e le c tr o n ic Mo s tly e le c tr o n ic

Mo s tly n u c le a r , s o m e c o u lo m b ic

M o der a t e m a ss, no c h a rg e

© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

E n tir e ly n u c le a r

S i mul a ti on M e thods B C A

W a s , p . 134

B in a r y C o llisio n A pproxi m a t i on

U ses i nter at om i c pot e nt ia l s (lik e M D ) t o a l l ow a t om s t o m ove

D oe s n ot rest r i ct c rys ta ll ini t y

C r eat es co l l i s i on cascade s p r et t y w el l !

© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

S i mul a ti on M e thods MD

Sol ve 𝐹 = 𝑚 𝑎 for e ve ry pa i r of a t om s

Int e rat om i c pot e nt i al s a re t he ke y t o in te r a c tio n s

R ight : MD si m ulat i on o f 1ke V cascade i n i r on a t 100K

W a s , p . 139

0. 18

ps

9. 5

ps

© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

S im u lat io n M et h o d s MD

ht t p: / / w w w . c m bi . r u. nl / r e doc k / i m a ge s / Le nna r dJ one s . png

http://www.cmbi.ru.nl/redock/images/LennardJones.png

I n te r a to m ic p o te n tia ls ar e t he ke y t o i nt e ra c t i ons

A ttr a c tiv e & r e p u ls iv e t e r m s

L e nna r d - Jon e s ( L J) p o te n tia l w i de l y us e d

Courtesy of Bo Hanssen & Sander Jans. Used with permission.

L e n n ar d - Jo n e s P o t e n t i al

S im u lat io n M et h o d s MD

J . Y u e t a l. J . M at er . C h em . , 19: 39 2 3 - 39 3 0 ( 2009)

http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/Articleimage/2009/JM/b902767j/b902767j-f1.gif

I n te r a to m ic p o te n tia ls ar e t he ke y t o i nt e ra c t i ons

A ttr a c tiv e & r e p u ls iv e t e r m s

L e nna r d- Jo n es ( L J) pot e nt i a l w i de l y us e d

© Royal Society of Chemistry. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

A t t r a c t i v e t er m s o f sel ec t ed po t en t i a l s ( d o t s ) , an d L J - m o d i f i e d v e r s i o n (l i n e s )

S im u lat io n M et h o d s MD

A video is played in class to demonstrate the concept.

h ttp : / / w w w - pe r s ona l . um i c h. e du/ ~ gs w / m ov i e s . ht m l

22. 1 4 Nu clear M ater ials Slid e 30

S im u lat io n M et h o d s MD

A video is played in class to demonstrate the concept.

h ttp : / / w w w - pe r s ona l . um i c h. e du/ ~ gs w / m ov i e s . ht m l

S i mul a ti on M e thods MC

W i t h pre - de t e rm i ne d Ex am p l e: TRI M di st ri but i o ns for s om e R a ndom l y c hoos e

f eat u r es scat t er i ng an gles, ne w

“R oll t he dice” t o sam ple f r om di s tribut i ons

L e t r a ndom num be r s de t e r m i ne w he r e t hi ngs m ove a nd c ha nge

m ean f r ee p at hs

S i mul a ti on M e thods MC

h ttp : / / w w w - pe r s ona l . um i c h. e du/ ~ gs w / m ov i e s . ht m l

© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

S i mul a ti on M e thods R a te The or y

C . J . Or t iz, M . J . C a tu r l a . J . C om put e r - A i d ed M at er i al s D esi g n 14: 17 1 - 18 1 ( 2007)

A s su m e r a te - c ont rol l e d e qua t i ons for de fe c t m i gra t i on, c l ust e ri ng

O ft e n e m pl oys “m e a n fi e l d t he ory”

G l os ses ove r de t ai l s t o accel er a t e t i m e

© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

S i mul a ti on M e thods R a te The or y

C . J . Or t iz, M . J . C a tu r l a . J . C om put e r - A i d ed M at er i al s D esi g n 14: 17 1 - 18 1 ( 2007)

H ow good i s t he a pproxi m a t i on? Is i t w ort h i t ?

© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

Dam ag e Cascad es S umma r y

W a s , p . 140

S p a n s m u ltip le tim e sc a le s

S et s t he st age f o r de f ect m i grat i on t o hi ghe r l engt h scal es

© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

S im ul a tion a ls o re qui re s m ul tis c a le m e t hods w i t h m uc h c re a tivi t y to g e t rig ht !

Disp lacem en t T h eo r y

D e fi ne a ra t e of a t om i c di spl a c e m e nt s usi ng fl ux:

𝐸 𝑖

M a x i mu m e n e r g y a v ai l ab l e E n e r g y d e p e n d e n t f l u x d i s t r i b u t i o n

𝐸 𝑚𝑎 𝑥

𝑅 =

0

𝑁 Φ

𝜎 𝐷

𝑑 𝐸 𝑖

𝐸 𝑖

𝑑 𝑖 𝑠𝑝 𝑙 .

R e a ct i o n r a t e 𝑚 3 𝑠𝑒 𝑐 M a t e r i al n u mb e r d e n s i t y

𝑎 𝑡 𝑜 𝑚𝑠

𝑚 3 D i spl a c em en t c r o ss sec t i o n

Disp lacem en t T h eo r y

D e fi ne a ra t e of a t om i c di spl a c e m e nt s usi ng fl ux:

𝐸 𝑚𝑎 𝑥

𝐸 𝑖

𝐸 𝑖

𝑅 =

0

𝑁 Φ

𝜎 𝐷

𝑑 𝐸 𝑖

𝑅 𝐷𝑃 𝐴

= =

𝐸 𝑖

𝐸 𝑖

𝑁 𝑠 𝑒𝑐

𝐸 𝑚𝑎 𝑥

Φ

𝜎 𝐷

𝑑 𝐸 𝑖

0

Disp lacem en t T h eo r y

D e fi ne a ra t e of a t om i c di spl a c e m e nt s usi ng fl ux:

𝐷 𝑃𝐴

=

𝐸 𝑖

𝐸 𝑖

𝑠 𝑒𝑐

𝐸 𝑚𝑎 𝑥

Φ

𝜎 𝐷

𝑑 𝐸 𝑖

0

K now n or pre - de t e rm i ne d O nl y unknow n qua nt i t y

D e ve l op e xpre s si on for di spl a c e m e nt c ross s e c t i on

Disp lacem en t T h eo r y

D e fi ne a ra t e of a t om i c di spl a c e m e nt s usi ng fl ux:

𝐷 𝑃𝐴

=

𝐸 𝑖

𝐸 𝑖

𝑠𝑒 𝑐

𝐸 𝑚𝑎 𝑥

Φ

𝜎 𝐷

𝑑 𝐸 𝑖

0

𝑇 𝑚𝑎 𝑥

P r o ba bi l i t y t ha t a n a t o m di spl a c ed b y a p a rtic le with e n e r g y E i le a v e s with r e c o il ener gy T ( di f f er en t i a l ener gy t r a ns f er c r o ss sec t i o n)

𝑣

𝑣 𝑇

𝜎 𝐷

=

𝐸 𝑖

𝑇 𝑚𝑖 𝑛

𝜎 𝐸 𝑖 , 𝑇

𝑑 𝑇

N u m b e r of a t om i c d isp la c e m e n t s

T i s t he PK A (di spl a c e d a t om ) re c oi l e ne r gy

f r o m a P KA w i th e n e r gy T

Disp lacem en t T h eo r y

𝜎 𝐷

𝑇 𝑚𝑎 𝑥

𝐸 𝑖

=

𝑇 𝑚𝑖 𝑛

𝜎 𝐸 𝑖 , 𝑇

𝑑 𝑇

𝑣 𝑇

A ssum e t he re i s som e t hre s hol d e ne r gy (E d ) be l ow w hi c h a di s pl a c e m e nt doe s not oc c ur:

𝑣 𝑇

= 0;

𝑇 <

𝐸 𝑑

O th e r w is e a d is p la c e m e n t w ill o c c u r :

𝑣 𝑇 = 1; 𝑇 𝐸 𝑑

Disp lacem en t T h eo r y

W a s , p. 74

𝜎 𝐷

𝑇 𝑚𝑎 𝑥

𝐸 𝑖

=

𝑇 𝑚𝑖 𝑛

𝜎

𝑑 𝑇

𝐸 𝑖 , 𝑇

𝑣 𝑇

Sha rp di spl a c e m e nt t hre shol d m ode l :

W ha t d oe s th is m o d el n eg l ect ?

© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

Disp lacem en t T h eo r y

W a s , p. 75

𝜎 𝐷

𝑇 𝑚𝑎 𝑥

𝐸 𝑖

=

𝑇 𝑚𝑖 𝑛

𝜎

𝑑 𝑇

𝐸 𝑖 , 𝑇

𝑣 𝑇

A dd s om e s m oot hne ss t o t hi s func t i on:

A c c ount s for a t o mi c v ib r a tio n s, im p u r itie s

© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

Disp lacem en t T h eo r y

W ha t i s t hi s t hre shol d e ne r gy?

L et s est i m at e?

1. E ne r gy t o bre a k m e t a l s urfa c e bonds: ~ 5e V

2. Shi ft re m ove d a t om t o t he i nt e ri or: x2

3. S tu f f a to m in a n in te r stitia l s it e , a ss u m e n o tim e to r e la x th e la ttic e : x 2

4. D isp la c e m e n t isn t in th e e a s ie s t d ir e c tio n : x 2

Disp lacem en t T h eo r y

W a s , p. 83

W h a t is th is t hre shol d e ne r gy?

N ot i c e a ny pa t t e rns i n t h e d at a?

C rys ta l s truc tur e ?

M e l t i ng poi nt ?

S om e t hi ng e l s e ?

© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

Disp lacem en t T h eo r y

𝜎 𝐷

𝑇 𝑚𝑎 𝑥

𝐸 𝑖

=

𝑇 𝑚𝑖 𝑛

𝜎

𝑑 𝑇

𝐸 𝑖 , 𝑇

𝑣 𝑇

R e t urni ng t o v (T ) , a s sum e s uf fi c i e nt l y hi gh e ne r gy PK A s c a n do m ore da m a ge !

E nt e r the Ki n ch i n - Pea s e (K - P) m ode l

Kin ch in - P ease M o d el

𝑣

2 𝑇

𝑇

𝜀𝜀

=

𝑇 0

𝑣

𝑑 𝜀𝜀

N o w s p l i t i n t o t h re e re le v a n t ra n g e s :

𝜀𝜀

E < 𝐸 𝑑 , 𝐸 𝑑 E < 2 𝐸 𝑑 , E > 2 𝐸 𝑑

𝑣

2 𝐸 𝑑

𝑇

=

𝑇 0

𝑣

2 𝐸 𝑑

𝜀𝜀

𝑑 𝜀𝜀 +

𝐸 𝑑

𝑣

𝑇

𝜀𝜀

𝑑 𝜀𝜀 +

2𝐸 𝑑

𝑣

𝑑 𝜀𝜀

Kin ch in - P ease M o d el

𝑣

2 𝐸 𝑑

𝑇

=

𝑇 0

𝑣

2 𝐸 𝑑

𝜀𝜀

𝑑 𝜀𝜀 +

𝐸 𝑑

𝑣

𝑇

𝜀𝜀

𝑑 𝜀𝜀 +

2𝐸 𝑑

𝑣

𝑑 𝜀𝜀

𝜀𝜀

F i rs t t e rm i s 0 (e n e r g y t o o l o w t o d i s p l a c e )

S e c o n d t e rm i s 1 (o n l y o n e d i s p l a c e m e n t p o s s i b l e )

𝜀𝜀

T h i rd t e rm is s t e a d il y i n c re a s i n g

𝑣

2 𝐸 𝑑

𝑇

=

𝑇 0

2𝐸 𝑑

0 𝑑 𝜀𝜀 +

𝐸 𝑑

𝑇

1 𝑑 𝜀𝜀 +

2𝐸 𝑑

𝑣

𝑑 𝜀𝜀

Kin ch in - P ease M o d el

Fi na l form ul a t i on:

W a s , p. 77

© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

M o d if icat io n s t o K- P M ode l

W as, p . 84 H . P a u l. A I P C onf . P r oc . 1525 : 309 ( 2013)

Is t he c ut of f e ne r gy re a l l y t rue ?

© Springer. All rights reserved. This content is excluded from © AIP Publishing LLC. All rights reserved. This content is excluded from our Creative our Creative Commons license. For more information, see Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ . http://ocw.mit.edu/help/faq-fair-use/ .

M o d if icat io n s t o K- P M ode l

W a s , p. 77

A l l ow nuc l e a r st oppi ng pow e r t o di m i ni s h,

but not di sa ppe a r , af t er E c

A lso a llo w e le c tr o n ic st oppi ng t o s t a rt t a ki ng ove r be fore E c

© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

M o d if icat io n s t o K- P M ode l

W a s , p. 102

A c c ount for c rys t a l l i ni t y: C ha nne l i ng

D i s p l aced at o m can t r av el t hrough e m pt y s pa c e b et w een l at t i ce p l an es

N uc l e a r s t oppi ng ~ 0

O nl y e l e c t r oni c s t oppi ng

© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

M o d if icat io n s t o K- P M ode l

W a s , p. 102

A c c ount for c rys t a l l i ni t y: C ha nne l i ng

D i s p l aced at o m can t r av el t hrough e m pt y s pa c e b et w een l at t i ce p l an es

N uc l e a r s t oppi ng ~ 0

O nl y e l e c t r oni c s t oppi ng

L ot s of pa t hs t o c ha nne l !

© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

M o d if icat io n s t o K- P M ode l

W a s , p. 92

C l ose - pa c ke d e ne r gy t ra nsfe r: Foc us i ng

T hi nk pa c ke d bi l l i a r d ba l l s on a pool t a bl e

A ssum e s ha rd sphe re c ol l i si ons

W he re w oul d t hi s ha ppe n?

Cl os e - pa cke d di r e c t i ons

C r ow di ons

D um bbe lls

© Springer. All rights reserved. This content is excluded from our Creativ e Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

T h e Real σ D Is Ug ly!

W a s , p. 108

[Was, Gary S. Fundamentals of Radiation Materials Science , pp. 92] removed due to copyright restrictions.

Dam ag e Af t er t h e Cascad e

W h at h ap p en s to d am ag e af t er t h e cas cad e?

P r oduc t i on

R e c om bi na t i on

A bs or pt i on a t s i nks

M ig ra tio n

P o in t Def ect Balan ce

C ha nge = G ai n L o s s

W h a t a r e th e p o s sib le g a in te r m s?

D i s pl a c e m e nt pr oduc t i on

R e a c t i on pr oduc t i on

W h a t a r e th e p o s sib le lo ss te r m s?

R e c om bi na t i on

L os s t o s i nks

D i f f us i on

P o in t Def ect Balan ce

C ha nge = G ai n L o s s

W h a t a r e th e p o s sib le sin k s?

G r a i n bounda r i e s

D is lo c a tio n s

Im p u ritie s

F r ee su r f aces

In c o h e re n t p re c ip ita t e s

G ain T er m s

D e fe c t Produc t i on R a t e :

𝐷 𝑃𝐴

𝑠 𝑒𝑐

𝐾 0 =

Fr o m SR IM , e t c .

𝜀𝜀

D amag e c as c ad e e f f i c i e n c y

R e a c t i on Produc t i on R a t e :

𝑛

𝑅 0 = 𝑅 𝑥 𝑛 𝑑

𝑑 = 1

Ig n o r e f o r n o w

L o ss T er m s: Reco m b in at io n

Int roduc e som e re c om bi na t i on ra t e c ons t a nt : 𝐾 𝑖𝑣

Rel at e t o t h e r el ev an t d ef ect co n cen t r at i o n s :

𝐶 𝑖 = 𝐼 𝑛𝑡 𝑒 𝑟 𝑠𝑡 𝑖𝑡 𝑖𝑎𝑙 𝐶 𝑜 𝑛 𝑐 𝑒 𝑛 𝑡𝑟𝑎 𝑡𝑖 𝑜 𝑛

𝐶 𝑣 = 𝑉 𝑎𝑐 𝑎𝑛𝑐 𝑦 𝐶 𝑜 𝑛 𝑐 𝑒 𝑛 𝑡𝑟𝑎 𝑡𝑖 𝑜 𝑛

𝜕 𝐶 𝑖 , 𝑣

𝜕 𝑡

𝑅 𝑒𝑐 𝑜𝑚 𝑏 𝑖 𝑛 𝑎 𝑡 𝑖 𝑜𝑛

= 𝐾 𝑖𝑣 𝐶 𝑖 𝐶 𝑣

L o ss T er m s: S in ks

For e a c h si nk, de fi ne a si nk s t re ngt h: 𝐾 𝑠

R e l a t e s i nk ra t e t o c onc e nt ra t i ons of de fe c t s 𝐶 𝑖 , 𝑣

a nd si nks:

𝜕 𝐶 𝑖 , 𝑣

𝜕 𝑡

𝑆 𝑖 𝑛 𝑘 𝑠

𝐴 𝑙𝑙 𝑆 𝑖 𝑛 𝑘 𝑠

=

𝑠 = 1

𝐾 𝑠 𝐶 𝑖 , 𝑣 𝐶 𝑠

L o ss T er m s: Dif f u sio n

W e a l re a dy know t hi s e qua t i on from Fi c k s L a w :

𝜕 𝐶 𝑖 , 𝑣

𝜕 𝑡

𝐷 𝑖 𝑓 𝑓 𝑢 𝑠 𝑖𝑜 𝑛

= 𝛻 𝐷 𝑖 , 𝑣 𝛻 𝐶 𝑖 , 𝑣

Co m b in in g T er m s:

𝜕 𝐶 𝑖 , 𝑣

=

𝜕 𝑡

𝐴 𝑙𝑙 𝑆 𝑖 𝑛 𝑘 𝑠

𝐷 𝑃 𝐴

𝑠𝑒 𝑐

𝜀𝜀 𝐾 𝑖 𝑣 𝐶 𝑖 𝐶 𝑣

𝑠 = 1

𝐾 𝑠 𝐶 𝑖 , 𝑣 𝐶 𝑠 + 𝛻 𝐷 𝑖 , 𝑣 𝛻 𝐶 𝑖 , 𝑣

Neg lec t S p at ia l V ar ian ce:

𝜕 𝐶 𝑖

𝜕 𝑡

= 𝐾 0

𝐾 𝑖𝑣 𝐶 𝑖

𝐶 𝑣

𝐴 𝑙𝑙 𝑆 𝑖 𝑛 𝑘 𝑠

𝑠 = 1

𝐴 𝑙𝑙 𝑆 𝑖 𝑛 𝑘 𝑠

𝐾 𝑠 𝐶 𝑖 𝐶 𝑠

𝜕 𝐶 𝑖

𝜕 𝑡

= 𝐾 0

𝐾 𝑖𝑣 𝐶 𝑖

𝐶 𝑣

𝑠 = 1

𝐾 𝑠 𝐶 𝑣

𝐶 𝑠

No t e o n V acan cy Co n c.

𝐶 𝑣 m us t be a dj ust e d t o a c c ount for t he rm a l v acan ci es :

𝐶 = 𝐶 𝐶 0

𝑣 𝑣 𝑣

Ad ju s t e d v ac an c y c o n c e n t r a t i o n T h e r mal v ac an c y c o n c e n t r a t i o n

T o t al v ac an c y c o n c e n t r a t i o n

W hy do w e i gnore t hi s for i nt e rs t i t i a l s ?

E qui l i br i um i nt e r s t i t i a l c onc e nt r a t i on i s s o l ow !

E q u ilib r iu m Def ect Co n c.

W as , p . 2 0 0

[Was, Gary S . Fundamentals of Radiation Materials Science , p. 20 0 . ISBN: 9783540494713] removed due to copyright restrictions.

L im it in g Cases o f P o in t Def ect Kin et ic E q u at io n s

(1) A ssum e l ow t e m pe ra t ure , low sink de nsi t i e s

𝜕 𝐶 𝑣

𝜕 𝑡

= 𝐾 0

𝐾 𝑖𝑣 𝐶 𝑖

𝐶 𝑣

𝐴 𝑙𝑙 𝑆 𝑖 𝑛 𝑘 𝑠

𝑠 = 1

𝐴 𝑙𝑙 𝑆 𝑖 𝑛 𝑘 𝑠

𝐾 𝑠 𝐶 𝑣

𝐶 𝑠

+ 𝛻 𝐷 𝑣 𝛻 𝐶 𝑣

𝜕 𝐶 𝑖

𝜕 𝑡

= 𝐾 0

𝐾 𝑖𝑣

𝐶 𝑖 𝐶 𝑣

𝑠 = 1

𝐾 𝑠

𝐶 𝑖

𝐶 𝑠

+ 𝛻 𝐷 𝑖 𝛻 𝐶 𝑖

Case 1: L o w T , L o w C s

W as , p . 1 9 4

[Was, Gary S . Fundamentals of Radiation Materials Science , p. 194 . ISBN: 9783540494713] removed due to copyright restrictions.

Case 1: L o w T , L o w C s

W as , p . 1 9 4

[Was, Gary S . Fundamentals of Radiation Materials Science , p. 194 . ISBN: 9783540494713] removed due to copyright restrictions.

Case 1: L o w T , L o w C s

W as , p . 1 9 4

[Was, Gary S . Fundamentals of Radiation Materials Science , p. 194 . ISBN: 9783540494713] removed due to copyright restrictions.

Case 1: L o w T , L o w C s

W as , p . 1 9 4

[Was, Gary S . Fundamentals of Radiation Materials Science , p. 194 . ISBN: 9783540494713] removed due to copyright restrictions.

Case 1: L o w T , L o w C s

W as , p . 1 9 4

[Was, Gary S . Fundamentals of Radiation Materials Science , p. 194 . ISBN: 9783540494713] removed due to copyright restrictions.

W h at s In a S in k T er m ?

𝐷 𝑖 + 𝐷 𝑣

𝐾 𝑖𝑣 = 4 𝜋 𝑟 𝑖𝑣

Si n k St r e n g t h In t e r ac t i o n r ad i u s D i f f u s i v i t i e s

𝐷 𝑖

𝐾 𝑖 𝑠 = 4 𝜋 𝑟 𝑖 𝑠

𝐷 𝑣

𝐾 𝑣 𝑠 = 4 𝜋 𝑟 𝑣 𝑠

Case 2: L o w T , M ed iu m C s

W as , p . 1 9 7

[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,

200. ISBN: 9783540494713] removed due to copyright restrictions.

Case 2: L o w T , M ed iu m C s

W as , p . 1 9 7

[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,

200. ISBN: 9783540494713] removed due to copyright restrictions.

Case 2: L o w T , M ed iu m C s

W as , p . 1 9 7

[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,

200. ISBN: 9783540494713] removed due to copyright restrictions.

Case 2: L o w T , M ed iu m C s

W as , p . 1 9 7

[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,

200. ISBN: 9783540494713] removed due to copyright restrictions.

Co m p ar e Cases 1 & 2

W a s , p p . 194, 197

[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,

200. ISBN: 9783540494713] removed due to copyright restrictions.

Case 3: L o w T , Hig h C s

W as , p . 1 9 8

[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,

200. ISBN: 9783540494713] removed due to copyright restrictions.

Case 3: L o w T , Hig h C s

W as , p . 1 9 8

[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,

200. ISBN: 9783540494713] removed due to copyright restrictions.

Case 3: L o w T , Hig h C s

W as , p . 1 9 8

[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,

200. ISBN: 9783540494713] removed due to copyright restrictions.

Case 3: L o w T , Hig h C s

W as , p . 1 9 8

[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,

200. ISBN: 9783540494713] removed due to copyright restrictions.

Case 3: L o w T , Hig h C s

W as , p . 1 9 8

[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,

200. ISBN: 9783540494713] removed due to copyright restrictions.

Co m p ar e Cases 2 & 3

W a s , p p . 197, 198

[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,

200. ISBN: 9783540494713] removed due to copyright restrictions.

Case 4: Hig h T em p er at u r e

W as , p . 2 0 0

[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,

200. ISBN: 9783540494713] removed due to copyright restrictions.

Case 4: Hig h T em p er at u r e

W as , p . 2 0 0

[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,

200. ISBN: 9783540494713] removed due to copyright restrictions.

Case 4: Hig h T em p er at u r e

W as , p . 2 0 0

[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,

200. ISBN: 9783540494713] removed due to copyright restrictions.

Case 4: Hig h T em p er at u r e

W as , p . 2 0 0

[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,

200. ISBN: 9783540494713] removed due to copyright restrictions.

Co m p ar e Cases 3 & 4

W a s , p p . 198, 200

[Was, Gary S. Fundamentals of Radiation Materials Science, pp. 194, 197-8,

200. ISBN: 9783540494713] removed due to copyright restrictions.

W h er e Do es T h is M o d el Br eak Do w n ?

N e a r sinks

Si nks w i t h bi a se s for de fe c t s

In te ra c t io n ra d ii

D ef ect - de pe nde nt s i nks

Ti m e - va ri a nt sinks

Ti m e - va ri a nt a nyt hi ng e l se

Spat i al v ari anc e

Ret u r n S p at ial V ar ian ce

𝜕 𝐶 𝑣

𝜕 𝑡

= 𝐾 0

𝐾 𝑖𝑣 𝐶 𝑖

𝐶 𝑣

𝑆 𝑖 𝑛 𝑘 𝑠

𝑠 = 1

𝑆 𝑖 𝑛 𝑘 𝑠

𝐾 𝑠 𝐶 𝑣

𝐶 𝑠

+ 𝛻 𝐷 𝑣 𝛻 𝐶 𝑣

𝜕 𝐶 𝑖

𝜕 𝑡

= 𝐾 0

𝐾 𝑖𝑣

𝐶 𝑖 𝐶 𝑣

𝑠 = 1

𝐾 𝑠

𝐶 𝑖

𝐶 𝑠

+ 𝛻 𝐷 𝑖 𝛻 𝐶 𝑖

W h a t s in a D a nyw a y?

Rad iat io n En h an ced Dif f u sio n

D a ( d i f f u si v i t y o f a t y p e o f at o m ) i s a su m o f al l r el ev an t ef f ect s

S om e a r e tur ne d on by r a dia tion ( in t e r s t i t i a l c y )

S o m e ar e en h an ced b y r ad i at i o n ( v acan cy )

𝐷 𝑒 𝑓 𝑒 𝑐𝑡 𝑠

𝐷 𝑎 = 𝑓 𝐷 𝑑 𝐶

𝑑 𝑎 𝑑

𝑖

2 𝑣

𝑎

2 𝑣

𝑑 = 1

𝐷 𝑎 = 𝑓

𝐷 𝑣 𝐶

+ 𝑓 𝐷 𝑖 𝐶

+ 𝑓

𝐷 2 𝑣 𝐶

𝑉

𝑎

𝑣

𝑖

𝑎

+ 𝑓

𝐷 𝑐 𝑟𝑜 𝑐𝑐 𝑑 𝑖 𝑜 𝑛 𝐶

+ 𝑓

𝐷 𝑑 𝑢 𝑚𝑏𝑏𝑒 𝑙𝑙 𝐶

𝑐 𝑟𝑜 𝑐𝑐 𝑑 𝑖 𝑜𝑛 𝑎

𝑐 𝑟𝑜 𝑐𝑐 𝑑 𝑖 𝑜 𝑛

𝑑 𝑢 𝑚𝑏𝑏𝑒 𝑙𝑙 𝑎

𝑑 𝑢 𝑚𝑏𝑏𝑒 𝑙𝑙

Co m p o n en t s o f Rad iat io n E n h an ced Dif f u sio n

W as , p . 2 0 7

[Was, Gary S . Fundamentals of Radiation Materials Science , p. 207. ISBN: 9783540494713] removed due to copyright restrictions.

Ret u r n in g Sp at ial Dep en d en ce: Case S t u d y

1D i on i rra di a t i on, i nc l ude s :

A f r ee su r f ace

D is lo c a tio n s

T h er m al v acan ci es ( n o t i n t er st i t i a l s)

D if f e rin g in te ra c t i o n ra d ii

S pa t i a l l y de pe nde nt de f e c t pr oduc t i on

In je c te d in te rs ti t i a l s

E xp er im en t al Evid en ce

99. 995% Fe

3.5M e V F e +2 sel f - i ons , 450C , ~ 1m A be a m c ur r e nt

F

/ A 1

8

C D

1. 8 · 10 -3 dpa /s

P eak d os es:

35, 75, 105dpa

F

200 keV 140 keV 10 keV

1. 7 M eV

1 M eV

C ha r act er i za t i on:

/

A

8

TEM

C

D

I m ag e an al y s i s

Courtesy of Lin Shao. Used with permission.

E xp er im en t al Evid en ce

V o id s w e llin g is obs e rve d be l ow m a t e ri a l surfa c e

N o s w e l l i ng obs e r ve d be yond m de pt h

R a nge of F e +2 i ons i s

~ 1.5μ m

L . S ha o e t a l . ( 2014)

S u r fa c e

B e am d ir e c tio n

(a ) 35 D PA

1 m

(b ) 75 D PA

1 m

(c) 105 D PA

1 m

Courtesy of Lin Shao. Used with permission.

E xp er im en t al Evid en ce

Co r r el at e d am ag e (poi nt de fe c t c re a t i on) w ith in je c te d in te r stitia ls

L . S ha o e t a l . ( 2014)

Courtesy of Lin Shao. Used with permission.

E xp er im en t al Evid en ce

Im a ge a na l ys i s use d t o e s tim a te v o id f r a c tio n vs. d i st a nc e

S qua r e s i de nt i f y voi ds

L . S ha o e t a l . ( 2014)

Courtesy of Lin Shao. Used with permission.

E xp er im en t al Evid en ce

Co r r el at e d am ag e 6

(poi nt de fe c t c re a t i on) 5

S w el l i ng ( % )

w ith in je c te d 4

in te r stitia ls 3

V oi ds not obs e r ve d

2

n ear i n j ect ed

in te rs ti t ia l s 1

0

L . S ha o e t a l . ( 2014)

DP A

35 D P A

70 D P A

105 D P A

Fe

s el f i ons

0 400 800 1200 1600

F e dept h ( nm )

Courtesy of Lin Shao. Used with permission.

M o r e Exp er im en t al E vid en ce

O c c urs i n c om pl e x a llo y s a s w e ll

T hi s i s a hi ghl y ge ne ra l

phe nom e non!

© Lin Shao. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .

F . A . Ga r ne r , M . B . T ol ocz k o , A . C e r t a i n, L . S ha o , J . G i ga x , C . W e i , Im pa c t o f the Inj e c t e d In t e r s ti ti a l E f f e c t o n Io n - Induc e d V o i d S w e l l i ng

i n A us t e ni ti c a nd F e r r it ic - O D S A l l o y s , T M S P o s t e r ( 2014)

M ode l i ng & S i mul a ti on E xp lain s t h e M ech an ism

U se d SR IM * c om put e r c ode t o cal cu l at e d am ag e r at e ( dpa / s ) a nd im p la n ta tio n r a te ( F e/ cm 3 - s)

*S t op p i n g R an g e o f Ion s i n M at t e r

M ode l i ng & S i mul a ti on E xp lain s t h e M ech an ism

Si m ul t a ne ousl y pl ot da m a ge (V + I) a nd i nj e c t e d in te r stitia ls ( I o n ly )

D am ag e

F e i n j ec t

M o d elin g & S im u lat io n E xp lain s t h e M ech an ism

U se SR IM da t a a s forc i ng func t i on for poi nt de fe c t b al an ce eq u at i o n s

A s su m p tio n s :

E M I = 0 . 1 8 e V ( < 1 1 0 > s p l i t d u m b b e l l i s d o m i n a n t i n t e r s t i t i a l d ef ect )

E M V = 0. 66e V ( a t om i c a l l y pur e i r on) or 1. 1e V ( r e a l i s t i c pur i t y )

N eg l ect f o r m at i o n o f l ar g er v acan cy o r i n t er s t i t i al d ef ect s

D e f e c t s c a n a nni hi l a t e by di f f us i on , ne t w or k di s l oc a t i on s , i n co h er en t p r eci p i t at es , n u cl eat ed v o i d s , r eco m b i n at i o n , f r ee s u r f a c e a n n i h i l a t i o n

S i mul a ti on Fr a me wor k

MOOS E M ul t i physi c s O b je c t O r ie n te d S im u la tio n E nvi ronm e nt

G re a tly s im pl if ie s c re a ting s im ul a tions q ui c kl y

S eam l ess a bil i t y t o f ull y co upl e O D E s & P D E s on a f i nit e el em ent f r am ew ork

R ecen t l y op e n s ou r c e d: w w w .m oos e f r am e w or k.c om

OD E O r d in ar y d if f e r e n t ial e q u a t io n PDE P ar t ial d if f e r e n t ial e q u a t io n

M ode l i ng & S i mul a ti on E xp lain s t h e M ech an ism

Supe ri m pos e bot h poi nt de fe c t pl ot s

D e fe c t Co nc e n - tr a ti o n s ( # / nm 3 )

I n t e r s t it ials V ac an c ie s

D e p t h ( nm )

M o d elin g & S im u lat io n E xp lain s t h e M ech an ism

P lo t e x c e s s in te rs titia l fra c tio n

D e p t h ( nm )

E xc e s s In t e r s ti ti a l s ( f r a ct i on )

Qua nti fy i ng the I nj e c te d In t er st it ial E f f ect

A r tific ia lly “t urn o f f” i nj e c t e d in te r stitia ls

R un s i de - by - sid e s im u la tio n s , a ll o t h er p ar am et er s eq u al

S c r e e ns ho t s ho w i ng di f f e r e nc e i n i nput f i l e s

Resu lt s P o in t Def ect s

3. 5 M e V F e +2 , 1 m A , 1 m m 2 b e a m , 450C , E M V = 0. 66e V

P o in t d e f e c ts f o llo w S R I M f o r c i ng func t i o n

P o in t d e f e c ts d o n o t q u it e f o llo w S R I M f o r c i ng func t i o n

I n t e r s t it ials V a c a nci es Dam ag e R a t e

D e p t h ( nm ) D e p t h ( nm )

Wi thout in j e c t e d in t e r s t it i a ls Wi th in j e c t e d in t e r s t it ia l s

Res ults V ac ancy Supe rsa tura t io n

3. 5 M e V F e +2 , 1 m A , 1 m m 2 b e a m , 450C , E M V = 0. 66e V

S uper s a t .

Dam ag e R

P ea k s nea r m a x i m um da m a g e r egi o n

B im o d a l d is trib u tio n , s h if t e d t o th e le f t b y 100n m

S uper s a t Dam ag e R a t e

D e p t h ( n

D e p t h ( n

D e p t h ( n m ) D e p t h ( n m )

Wi thout in j e c t e d in t e r s t it i a ls Wi th in j e c t e d in t e r s t it ia l s

Resu lt s V o id Nu cleat io n Rat e

3. 5 M e V F e +2 , 1 m A , 1 m m 2 b e a m , 450C , E M V = 0. 66e V

C l ea r l y pea k s a t m a x i m um da m a g e r egi o n

V er y bi m o da l di s t r i but i o n, shi ft ed t o t he l e f t b y 100n m

Vo i d N ucl .

Dam ag e R a

Vo i d N uc l Dam ag e R a t e

m

D e p t h ( n

m

D e p t h ( n

D e p t h ( n ) D e p t h ( n m )

Wi thout in j e c t e d in t e r s t it i a ls Wi th in j e c t e d in t e r s t it ia l s

Co m p ar e w it h Exp er im en t s

S w el l i ng ( % )

3. 5 M e V F e +2 , 1 m A , 1 m m 2 b e a m , 450C , E M V = 0. 66e V

6

5

DP A

35 D P A

70 D P A

105 D P A

4

3

Fe

s el f i ons

2

1

0

0

400

800

1200

1600

F e dept h ( nm )

D e p t h ( nm )

D e p t h ( nm )

I nj ec t ed I n t er s ti t i a l s

Wi t h / W i thout

S i m ul a ti on v s . E x p e r i m e n ts

E xp lan at io n

S m al l s p at i al d ef ect i m b al an ce h as l ar g e ch an g e i n v acan cy s upe rs a t ura t i on a t p e a k in je c te d in te r stitia l lo c a tio n s

T hi s i n t urn af fe c t s v oi d nuc l e at i on rat e

MIT OpenCourseWare http://ocw.mit.edu

2 2.14 Materials in Nuclear Engineering

Spring 20 1 5

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .