1.021 , 3.021, 10.333, 22.00 : Introduction to Modeling and Simulation : Spring 2012 Part II – Quantum Mechanical Methods : Lecture 9
Some Review & Introduction to Solar PV
Jeffrey C. Grossman
Department of Materials Science and Engineering Massac husetts Institute of T ec hnology
Par t II T opics
1. It ’ s a Quantum W orld: The Theor y of Quantum Mechanics
2. Quantum Mechanics: Practice Mak es P erf ect
3. Fr om Man y-Body to Single-Par ticle; Quantum Modeling of Molecules
4. Application of Quantum Modeling of Molecules: Solar Thermal Fuels
5. Application of Quantum Modeling of Molecules: Hydr ogen Storage
6. Fr om Atoms to Solids
7. Quantum Modeling of Solids: Basic Pr oper ties
8.
Advanced Pr op . of Materials: What else can w e do?
0.
1
Application of Quantum Modeling of Solids: Solar Cells Par t II
11. Application of Quantum Modeling of Solids: Nanotechnolog y
Lesson outline
• Discussion of PSET
• Re vie w f or the Quiz
• Int r oduction to Solar PV
?
mec hanical
pr oper ties
Motivation: ab-initio modeling!
?
electrical pr oper ties
?
optical
pr oper ties
Vision without Action is a Dream Action without Vision is a Nightmare
Japanese proverb
W h y quantum mechanics?
P r oblems in classical p h ysics that led to quantum mechanics:
• “classical atom”
• quantization of p r oper ties
• w a v e aspect of matter
• (black-body radiation), ...
W a v e aspect of matter
light matter
w a v e character par ticle character
_
_
_ _
_
_
_
_
_
_
_
_
_
Image by MIT OpenCourseWare.
Image in public domain. See Wikimedia Commons .
W a v e aspect of matter
e
par ticle : E w a v
and momentum p k
p k = n k k =
h k k
de B r oglie: fr ee par ticle can be described a as
plane w a v e with
ψ (
k r
.
, t ) = Ae
i ( k · � r − ωt )
�
λ = h mv
λ | k k |
Interp r etation of a w a v efunction
ψ ( k r, t ) w a v e function (complex)
| ψ | 2 = ψψ ∗ interpr etation as pr obability to find par ticle!
(r, t)
2
(r, t)
�
∞
ψψ ∗ dV = 1
−∞
Image by MIT OpenCourseWare.
Schrödinger equation
H time independent: ψ ( k r, t ) = ψ ( k r ) · f ( t )
f ˙ ( t ) H ψ ( k r )
i n = = const. = E f ( t ) ψ ( k r )
H ψ ( k r ) = Eψ ( k r )
k
ψ ( k r, t ) = ψ ( k r ) · e −
i Et
time independent Schrödinger equation stationar y Schrödinger equation
The h yd r ogen atom
stationar y
Schrödinger equation H ψ = E ψ
� n 2
� T + V � ψ = Eψ
2 �
just sol v e
— 2 m ∇
—
2 m ∇
—
n 2 2
+ V ψ ( k r ) = Eψ ( k r )
4 π s 0
ψ ( k r ) = Eψ ( k r )
e 2 �
r
The h yd r ogen atom
q u a n t u m n u m b e r s
n |
l |
m l |
F( ) |
P( ) |
R(r) |
1 |
0 |
0 |
1 2 |
1 2 |
2 e -r/a 0 a 3/ 2 0 |
2 |
0 |
0 |
1 2 |
1 2 |
1 r -r / 2 a 0 2 2 a 3/ 2 2- a e 0 0 |
2 |
1 |
0 |
1 2 |
6 co s 2 |
1 r e -r / 2 a 0 2 6 a 3/ 2 a 0 0 |
2 |
1 |
1 |
1 e ±i 2 |
3 sin 2 |
1 r e -r / 2 a 0 2 6 a 3/ 2 a 0 0 |
Image by MIT OpenCourseWare.
The h yd r ogen atom
Energies:
© R. Nave. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
Atomic units
1 eV = 1.6021765 -19 J
1 Rydberg = 13.605692 eV = 2.1798719 -18 J
1 Har tr ee = 2 Rydberg
1 Bohr =5.2917721 -11 m
Atomic units (a.u.) :
Energies in Ry Distances in Bohr
Also in use: 1 Å =10 -10 m, nm= 10 -9 m
E v er ything is spinning ...
Stern–Gerlach experiment (1922)
F k = −∇ E
= ∇ m k · B k
Image courtesy of Teresa Knott.
E v er ything is spinning ...
ne w quantum n umber : spin quantum n umber f or elect r ons: spin quantum n umber can ON L Y be
up d o wn
Pauli ’ s exclusion p rinci p le
T w o elect r ons in a system cannot h a v e the same quantum n umbers!
quantum n umbers: main n: 1,2,3 ...
orbital l: 0,1,...,n-1
magnetic m: -l,...,l spin: up , do wn
h ydr ogen
... ... ... ...
3s 3p 3d
2s 2p
1s
P eriodic table of elements
This image is in the public domain. Source: Wikimedia Commons .
Next? Helium?
e
r 12
H ψ = E ψ
⇥
+ e
r 2 H 1 + H 2 + W ψ ( k r 1 , k r 2 ) = Eψ ( k r 1 , k r 2 )
T 1 + V 1 + T 2 + V 2 + W ⇥ ψ ( k r 1 , k r 2 ) = Eψ ( k r 1 , k r 2 )
n 2 2 e 2
n 2 2 e 2
e 2 ⇥
— 2 m ∇ 1 −
0
4 πs 0 r 1
— 2 m ∇ 2 −
4 πs 0 r 2
+ 4 πs
r 12
ψ ( k r 1 , k r 2 ) = Eψ ( k r 1 , k r 2 )
cannot be solv ed anal yticall y p r oblem!
Solutions
quantum chemistr y
density functional theor y
Molle r -Plesset per turbation theor y MP2
coupled cluster theor y CCSD(T)
The T w o Paths
Ψ is a w a v e function of all positions & time .
-
-
-
-
-
-
- -
n 2 2 ⇥ ∂
— 2 m ∇
+ V ( k r, t ) ψ ( k r, t ) = i n ψ ( k r, t )
∂t
Chemists (mostl y) P h ysicists (mostl y)
Ψ = something simpler
H = something simpler
-
21
“mean field” methods
Walter Kohn
W orking with the Density
E [ n ] = T [ n ] + V ii + V ie [ n ] + V ee [ n ]
kinetic ion-electr on
n=# |
Ψ (N 3n ) |
ρ (N 3 ) |
1 |
8 |
8 |
10 |
10 9 |
8 |
100 |
10 90 |
8 |
1,000 |
10 900 |
8 |
ion-ion electr on-electr on
© unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
ion potential Har tr ee potential exchange-cor r elation
potential
100,000
10,000
1000
100
MP2
QMC
CCSD(T)
10
Exact treatment
1
2003
2007
201 1
2015
Y ear
Number of Atoms
Linear scaling DFT
DFT
W h y DFT?
Image by MIT OpenCourseWare.
Density functional theor y
E [ n ] = T [ n ] + V ii + V ie [ n ] + V ee [ n
kinetic ion-ion ion-electr on electr on-electr on
elect r on density n ( k r ) =
Σ | φ i ( k r ) | 2
i
E ground state = m i n E [ n
φ
Find the w a v e functions that minimize the energ y using a functional derivativ e .
Self-consistent cycle
K ohn-Sham equations
n ( k r ) =
Σ | φ i ( k r ) | 2
scf loop
i
Density functional theor y
Onl y one p r oblem:
v xc not kno wn!!!
a pp r o ximations necessar y
local density general gradient a pp r o ximation a pp r o ximation
L D A GGA
• structur e
• bulk modulus
binding energies r eaction paths
• shear modulus f or ces
• elastic constants
pr essur e
str ess
• vibrational pr oper ties ...
• sound v elocity
?
as m y basis big
enough?
W as m y b o x big
enough?
Did I exit the scf
loop at the right
point?
Co n v ergence f or molecules
Cr ystal symmetries
S BC FC
= simple
= body center ed
= face center ed
© Sandeep Sangal/IITK. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
The i n v erse lattice
The r eal space lattice is described b y thr ee basis v ectors:
R k = n 1 k a 1 + n 2 k a 2 + n 3 k a 3
The in v erse lattice is described b y thr ee basis v ectors:
G k = m 1 k b 1 + m 2 k b 2 + m 3 k b 3
e iG · R = 1
ψ ( k r ) =
Σ c j e iG j · r
j
automaticall y periodic in R!
The Brillouin zone
in v erse lattice
The Brillouin zone is a special unit cell of the in v erse lattice .
Image by Gang65 on Wikimedia Commons. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
The Brillouin zone
Brillouin zone of the FCC lattice
P eriodic potentials
V ( k r )
R k
R k
R k
© Prof. Dr. Helmut Föll. A ll rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .
V ( k r ) = V ( k r +
R k )
l attice v ector
NEW quantum n umber k that liv es in the in v erse lattice!
(
Bloch ’ s theor em ψ k ) = e ik · r u k ( k r )
u k ( k r ) = u k ( k r + R k )
I n v erse lattice
Results of Bloch ’ s theor em:
k k
ψ ( k r + R k ) = ψ ( k r ) e ik · R
| ψ ( k r + R k ) | 2 = | ψ ( k r ) | 2
charge density
k k is lattice periodic
if solution
G ⇤ k ( → r ) — → G ⇤ k + G ⇤ ( → r )
also solution
with
E ⇤ k = E ⇤ k + G ⇤
Structural p r oper ties
finding the str ess/pr essur e and the bulk modulus
E tot
V 0 V
∂E ∂p ∂ 2 E
p = − σ bulk = − V = V
∂V ∂V ∂V 2
Calculating the band structu r e
1. Find the con v erged gr ound state
density and potential.
3- step p r ocedur e 2. F or the con v erged potential calculate
the energies at k-points along lines .
3. Use some softwar e to plot the band
6
15
0
'
25
X
E C
1
E
V
S 1
-10
L
k
X U,K
structur e .
n ( k r ) = Σ | φ i ( k r ) | 2
i
E (eV)
K ohn-Sham equations
silicon
Metal/insulator
6
X 1
15
' 25
E (eV)
E C
0 E V
F ermi energ y
Ar e an y bands cr ossing the F ermi energ y?
YES: ME T AL NO: INSUL A T OR
S 1
-10
Number of electr on in unit cell: EVEN: M A YBE INSUL A T OR ODD: FOR SURE ME T AL
L
k
X U,K
Image by MIT OpenCourseWare.
E (eV)
E=hv
Simple optical p ro p er ties
6
u noccupied
15
0
'
25
X
1
E C E
V
S 1 occupied
-10
L
k
X
U,K
Image by MIT OpenCourseWare.
shor test wa v e length visible 400 nm ; cor r esponds to photon with E=3.1 eV
Image in the public domain.
Vibrational p r oper ties
f o r c e
lattice vibrations ar e called: phonons
What is the fr equency of this vibration?
i r on
Magnetization
&control
calculation = 'scf',
/
pseudo_dir = ''
&system
ibrav=3,
celldm(1)=5.25, nat=1,
ntyp=1,
ecutwfc=25.0,
occupations='smearing'
/
smearing='gauss', degauss=0.05,
starting_magnetization(1)=0.0
nspin=1
&electrons
/
conv_thr=1.0d-10
ATOMIC_SPECIES
Fe 55.847 iron.UPF
ATOMIC_POSITIONS {crystal} Fe 0.0 0.0 0.0
K_POINTS {automatic} 4 4 4 1 1 1
nspin=1: non spin-polarized nspin=2: spin-polarized
star ting magnetization f or each atom
perf orm thr ee calculations and find lo w est energ y:
non spin-polarized spin-polarized
f er r omagnetic anti-f er r omagnetic
With the band structur e and DOS w e find:
• electrical conductivity (insulator/metal/semiconductor)
• thermal conductivity
• optical pr oper ties
• magnetization/polarization
• magnetic/electric pr oper ties
• ...
?
as m y basis big
enough?
W as m y k-mesh
fine enough?
Did I exit the scf
loop at the right
point?
Co n v ergence f or solids
Summar y of p r oper ties
structural p r oper ties electrical p r oper ties optical p r oper ties magnetic p r oper ties vibrational p r oper ties
43
Image of Airbus A380 on Wikimedia Commons . License: CC-BY-SA. Images of circuit board, phone, hard drive © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ . Aerothermodynamic image of shuttle, courtesy NASA .
It ’ s Not Only About W arming: Abundance of
Aff or dable Energ y Resou r ces Can Uplift the W orld
x4 x13
HUMAN WELL-BEING INCREASES WITH INCREASED PER-CAPI T A ENERGY USE
© AIP Publishing. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair- use/ . 44 Cour tesy: Vladimir Bulo vic
It ’ s Not Only About W arming: Abundance of Aff or dable Energ y Resou r ces Can Uplift the W orld
Nor th American Electrical Black out
08/14/2003
… August 15 …
just 24 hours into black out Air P ollution was Reduced
SO 2 >90% O 3 ~50%
Light Scattering Par ticles ~70%
“This clean air benefit was r ealized o v er m uch of eastern U .S . ”
Marufu et al., Geoph ysical Resear ch Letters 2004
b y 4:13 pm 256 po w er plants w er e off-line
Images courtesy of Vladimir Bulovic. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
Cour tesy: Vladimir Bulo vic
45
Ma p of the W orld Scaled to Energ y
Consumption b y Countr y
Newman, U. Michigan, 2006
• In 2002 the w orld burned energ y at a rate of 13.5 TW
• Ho w fast will w e burn energ y in 2050?
• (assume 9 billion people)
• If w e use energ y li k e in U .S. w e will need 102 TW
• Conser vativ e estimate: 28~35 TW
46
Energ y use estimates fr om Nocera, Daedalus 2006 & Le wis and Nocera, PNAS 2006
U .S. Energ y Consumption
Goal: consume half of our electricity thr ough r ene wable sour ces b y the y ear 2050.
© unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
47
Energ y f r om the Sun
Courtesy of SOHO/EIT (ESA & NASA) consortium.
• Energ y r eleased b y an ear thqua k e of magnitude 8 (10 17 J):
• the sun deliv ers this in one second
• Energ y humans use ann uall y (10 20 J):
• sun deliv ers this in one hour
• Ear th ’ s total r esour ces of oil (3 trillion bar r els, 10 22 J):
• the sun deliv ers this in tw o d a ys
48
MIT OpenCourseWare http://ocw.mit.edu
3.021 J / 1.021J / 10.333J / 18.361J / 22.00J Introduction to Modelling and Simulation
Spring 20 1 2
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .