1.021 , 3.021, 10.333, 22.00 : Introduction to Modeling and Simulation : Spring 2012 Part II – Quantum Mechanical Methods : Lecture 5
More QM Modeling for Solar Thermal Fuels, Plus a Little H-Storage
Jeffrey C. Grossman
Department of Materials Science and Engineering
Massac husetts Institute of T ec hnology
Par t II T opics
1. It ’ s a Quantum W orld: The Theor y of Quantum Mechanics
2. Quantum Mechanics: Practice Mak es P erf ect
3. Fr om Man y-Body to Single-Par ticle; Quantum Modeling of Molecules
4. Application of Quantum Modeling of Molecules: Solar Thermal Fuels
5. Application of Quantum Modeling of Molecules: Hydr ogen Storage
6. Fr om Atoms to Solids
7. Quantum Modeling of Solids: Basic Pr oper ties
8. Advanced Pr op . of Materials: What else can w e do?
9. Application of Quantum Modeling of Solids: Solar Cells Par t I
10. Application of Quantum Modeling of Solids: Solar Cells Par t II
11. Application of Quantum Modeling of Solids: Nanotechnolog y
Lesson outline
• F eeling g ood about energ y le v els
• Contin ued discussion of solar thermal fuels
• Interactiv e calculations and discussion on candidate fuels
• Hyd r ogen storage
Let ’ s l ook at a sing le element:
carbo n
Nanotube architecture © John Hurt; graphene integrated circuit © Raghu Murali; other images © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
Ca rbon in Ene r g y to Date
One Bar r el of oil (159 liters) =
1.73 MWh of energ y .
© source s unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair- use/ .
Sa me C: 10 5 X Imp r o v ement
That same 1 barrel could be used to make the plastic needed for thin-‐film solar cells.
© source s unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair- use/ .
The solar cells could generate ~16,000 MWh of energy over their lifetime, or 10,000 X as much.
Ene r g y Le v els a nd Basis Sets
L et ’ s pause and f eel our oneness with these things.
H G ( → r ) = E G ( → r )
Energ y L e v els
The S. Eq. leads to w a v efunctions
Which squar ed lead to pr obability distributions
Which once spin is ta k en into account
Image adapted from Wikimedia Commons, http://commons.wikimedia.org .
Courtesy of David Manthey. Used with permission. Source: http://www.orbitals.com/orb/orbtable.htm .
T ells us about energ y le v els!
Energ y L e v els
Courtesy of Mark R. Leach on meta- synthesis.com .
http://ww w .meta- synthesis.com/w ebbook/39_diatomics/diatomics.html
R e vi e w: Basis functions
Matrix eigen value equation: G = Σ c i ф i
i
H G = E G
H Σ c i ф i = E Σ c i ф i
expansion in or thonormalized basis functions
j
∫ d → r ф H
i i
Σ
d → r ф Σ c i ф i
∫
j
c i ф i = E
i i
Σ H j i c i = E c j
i
H ⇤ c = E ⇤ c
Basis Set Con v e r gence
When is a basis set con v erged?
• Man y basis sets h a v e been made f or diff er ent elements.*
• Y ou can ma k e y our o wn one to o .
• This can lead to big tables (but chemists lo v e big tables!).
* see , e .g., bse .pnl.g o v
Basis Set Con v e r gence
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair- use/ .
What else?
After the basis set is con v erged, is the calculation “right”?
example: what is the most stable structur e of 20 carbon atoms?
Hmmmm....
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information,
Back to our fi r st
a p p l i c a t i o n e x a m p l e : S o l ar Chemical Fuels
Sola r - Chemical :
Heat sto r ed in chemical bonds
Old Idea, BU T: ra p i d deg r adation for ALL cases.
Cha r ging
Heat
Discha r ging
A no v el a pp r oach to sola r thermal f uels
There are many, many photoactive molecules...
h
DHA/VHF
...that are terrible solar thermal fuels.
h
E/Z−
h Stilbene
spiropyran/merocyanine
Ca n w e tur n the m int o goo d ones ?
Role of the CNT template
Intermolecular Separation (A)
Rigid substrate – fixes inter-‐molecular distances over long range, enabling:
steric inhibition
-‐stacking
hydrophobic interactions
Enables design of spe cific intermolecular interactions – not available in free azobenzene
h
h
Ne w Mate r ials for Sola r Thermal Fuels
h
Δ
Template Materials + Photoactive Molecules
Ne w Chemistry Platform for Sola r Thermal Fuels
=
So Why do W e Need QM?
h
E a
H
Solar radiation spectrum © Robert A. Rohde/Global Warming Art . License: CC-BY-SA. This content is excl uded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
excited state
19
In-Class Calculations of Sola r Thermal Fuels
K ey Conce pt: Density of States (DOS)
20
F r om The Ba nd Ga p to Stor a ge Efficiency
• Assume that all photons that h a v e higher energ y than the band ga p get absorbed b y the molecule AND lead to photo- isomerization.
• Let the fraction of molecules in the excited state (cis state) be x.
• Then, f or a solar spectrum I(lamda):
Z
λ max ,ci s
x
0
I ( λ ) d λ = ( 1 —
Z
x )
0
λ max ,t r an s
I ( λ ) d λ
λ max = E
hc
bandg ap
F r om Absor ption Spectr a to Stor a ge Efficiency
• Assume that all absorbed photons lead to photo- isomerization.
• Let the fraction of molecules in the excited state (cis state) be x.
• Then, f or a solar spectrum I(lamda):
x Z abs
( λ ) I ( λ ) d λ = ( 1 — x ) Z abs
I ( λ )
( λ ) d λ
cis
( hc )
tr ans
( hc )
λ λ
But how do w e g e t this “ abs” f unc ti on?
-‐-‐> from the energy levels!!
Summar y/Reading
• What is con v ergence in a Quantum Mechanical Calculation?
• F eeling f or what those energ y le v els mean!
• Connection of energ y le v els to light absorption, and connection of that to charging efficiency in
solar fuels.
• Extra r eading: g oogle “atomic orbitals , ” “molecular orbital theor y , ” etc .
• A bit on h yd r ogen storage .
MIT OpenCourseWare http://ocw.mit.edu
3 . 021 J / 1.021J / 10.333J / 18.361J / 22.00J Introduction to Modelling and Simulation
Spring 20 1 2
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .