1.021 , 3.021, 10.333, 22.00 : Introduction to Modeling and Simulation : Spring 2012 Part II – Quantum Mechanical Methods : Lecture 3
From Many-Body to Single-Particle: Quantum Modeling of Molecules
Jeffrey C. Grossman
Department of Materials Science and Engineering
Massac husetts Institute of T ec hnology
Par t II T opics
1. It ’ s a Quantum W orld: The Theor y of Quantum Mechanics
2. Quantum Mechanics: Practice Mak es P erf ect
3. Fr om Man y-Body to Single-Par ticle; Quantum Modeling of Molecules
4. Application of Quantum Modeling of Molecules: Solar Thermal Fuels
5. Application of Quantum Modeling of Molecules: Hydr ogen Storage
6. Fr om Atoms to Solids
7. Quantum Modeling of Solids: Basic Pr oper ties
8. Advanced Pr op . of Materials: What else can w e do?
9. Application of Quantum Modeling of Solids: Solar Cells Par t I
10. Application of Quantum Modeling of Solids: Solar Cells Par t II
11. Application of Quantum Modeling of Solids: Nanotechnolog y
Motivation
?
Last time: 1-electr on quantum mechanics to describe spectral lines
Image adapted from Wikimedia Commons, http://commons.wikimedia.org .
Image of NGC 604 nebula is in the public domain. Source: Hubble Space Telescope Institute (NASA). Via Wikimedia Commons .
.
?
T od a y: man y electr ons to describe materials.
Lesson outline
• Re vie w
• The Man y-body P r oblem
• Har tr ee and Har tr ee-F ock
• Density Functional Theor y
• Computational App r oaches
• Modeling Softwar e
• PWscf
R e vi e w: Schrödinger equation
H time independent: 1 ( ⌃ r , t ) = 1 ( ⌃ r ) · f ( t )
f ˙ ( t ) H 1 ( r r )
i n = = const. = E f ( t ) 1 ( r r )
H G ( → r ) = E G ( → r )
k
/ ( ⌃ r , t ) = / ( ⌃ r ) · e -
i E t
time independent Schrödinger equation stationar y Schrödinger equation
R e vi e w: The h yd r ogen atom
stationar y
Schrödinger equation H l = E l
T + V ⇥ G = E G
k 2 2
just sol v e
☺
— 2 m D
k 2 2
+ V ⇥ G ( → r ) = E G ( → r )
0
e 2 ⇥
— 2 m D
— 4 v s r
G ( → r ) = E G ( → r )
R 10
2
r 2 R 2
10
1
0.4
0.2
0 0
0 1 2 3 4
r
0 1 2 3
4
r
R 20
0.6
0.4
0.2
0
-0.2
r 2 R 2
20
2
6
10
r
0.15
0.1
0.05
0
0 2
6
10
r
R 21
r 2 R 2
21
0.12 0.15
0.08 0.1
0.04 0.05
0 0
0 2 6
10 r
0 2
6
10
r
R 30
0.4
0.2
0
-0.1
r 2 R 2
30
0.08
4 8 12 16
0.04
r
0
0 4 8 12
16
r
R 31
0.08
0.04
0
-0.04
r 2 R 2
31
4 8 12 16
0.8
0.4
r
0
0
4 8 12 16 r
R 32
r 2 R 2
32
0.04
0.02
0.8
0.4
0
0 4 8 12
16
r
0
0 4 8 12 16 r
Radial functions R nl (r) and radial distribution functions r 2 R 2 (r) for
nl
atomic hydrogen. The unit of length is a = (m/ ) a 0 , where a 0 is the first Bohr radius.
Radial W a v efunctions f or a Coulomb V(r)
Z
r
Thickness dr
y
X
Angular Par ts
Image by MIT OpenCourseWare.
R e vi e w: The h yd r ogen atom
a =
0
h 2 me 2
= .0529 nm = first B ohr ra dius
q u a n t u m n u m b e r s
n |
l |
m l |
Atomic Orbital |
n l m ( r , , ) l |
1 |
0 |
0 |
1s |
1 e -r/a 0 a 3/ 2 0 |
2 |
0 |
0 |
2s |
1 r -r/2a 0 4 2 a 3/ 2 2- a e 0 0 |
2 |
1 |
0 |
2p |
1 r e -r/2 a 0 cos 4 2 a 3/ 2 a 0 0 |
2 |
1 |
1 |
2p |
1 r e -r/2 a 0 si n e ±i 8 a 3/ 2 a 0 0 |
R e vi e w: The h yd r ogen atom
© R. Nave. All rights reserved. This content is excluded from our Creative Commons
R e vi e w: The h yd r ogen atom
© unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
R e vi e w: Next? Helium
e -
r 1 r 12
-
H 1 = E 1
+ e
r 2 H 1
+ H 2
+ W ⇥ G ( → r 1
, → r 2 ) = E G ( → r 1
, → r 2 )
T 1 + V 1 + T 2 + V 2 + W ⇥ G ( → r 1 , → r 2 ) = E G ( → r 1 , → r 2 )
k 2 2
e 2 k 2 2 e 2
e 2 ⇥
0
— 2 m D 1 —
4 v s 0 r 1
— 2 m D 2 —
4 v s 0 r 2
+ 4 v s
r 12
G ( r 1 , r 2 ) = E G ( r 1 , r 2 )
cannot be solv ed anal yticall y p r oblem!
R e vi e w: Spin
ne w quantum n umber : spin quantum n umber f or elect r ons: spin quantum n umber can ON L Y be
up d o wn
E v er ything is spinning ...
Stern–Gerlach experiment (1922)
F ⇧ = — D E
= D m ⇧ · B ⇧
Image courtesy of Teresa Knott.
E v er ything is spinning ...
In quantum mechanics par ticles can h a v e a magnetic moment and a ”spin”
magnetic moment
m ⇥
spinning charge
E v er ything is spinning ...
conclusion f r om the Stern-Gerlach experiment
f or elect r ons: spin can ON L Y be
up d o wn
Spin Histor y
Disco v er ed in 1926 b y Goudsmit and Uhlenbeck
Part of a letter by L.H. Thomas to Goudsmit on Mar ch 25 1926 (sour ce: W ikipedia).
© Niels Bohr Library & Archives, American Institute of Physics. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
Pauli ’ s exclusions principle
T w o elect r ons in a system cannot h a v e the same quantum n umbers!
quantum n umbers: main n: 1,2,3 ...
orbital l: 0,1,...,n-1
magnetic m: -l,...,l spin: up , do wn
h ydr ogen
... ... ... ...
3s 3p 3d
2s 2p
1s
Pauli Exclusion Principle
“Alr eady in m y original pa per I str essed the ci r cumstance that I was unable to giv e a logical r eason f or the exclusion principle or to deduce it f r om mor e general assumptions. I had al w a ys the f eeling, and I still h a v e it tod a y , that this is a deficienc y . ”
W . Pauli, Exclusion Principle and Quantum Mechanics, Nobel prize acceptance lectur e , Stockholm (1946).
Image via Wikimedia Commons . License: CC-BY-SA. This content is excluded from our Creative
P eriodic table
This image is in the public domain. Source: Wikimedia Commons .
The ma n y-body p r oblem
helium: 2e - i r on: 26e -
e -
r 1 r 12
+ e -
r 2
G = G ( → r 1 , . . . , → r n )
Image © Greg Robson on Wikimedia Commons. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
Dirac Quotes
Y ear 1929…
The underl ying p h ysical l a ws necessar y f or the mathematical theor y of a large par t of p h ysics and the whole of chemistr y ar e thus completel y kno wn, and the difficulty is onl y that the exact a pplication of these l a ws leads to equations m uch too complicated to be soluble .
P .A.M. Dirac , Pr oc . Ro y . Soc . 123, 714 (1929)
...and in 1963
If ther e is no complete agr eement […] betw een the r esults of one ’ s w ork and the experiment, one should not allo w oneself to be too discouraged [...]
P .A.M. Dirac , Scientific American, M a y 1963
2
2
The Multi-Elect r on Hamiltonian
H l = E l
Remember
the g ood old da ys of the
— k D 2 — e ⇥ G ( r ) = E G ( r )
The y ’ r e o v er!
1- electr on H-atom??
2 m 4 v s 0 r
N h 2
1 N N
Z i Z j e 2 h 2
n N n
Z e 2 1 n n e 2
R i
H 2
2
i
i 1
2 M i
2 m
2 i 1
j 1 i j
R i R j
r i
i 1 i 1 j 1
R i r j
r i r j
2 i 1 j 1
i j
kinetic energ y of ions kinetic energ y of electr ons electr on-ion interaction potential energ y of ions electr on-electr on interaction
Multi-Atom-Multi-Elect r on Schrödinger Equation
H R 1 , ..., R N ; r 1 , ..., r n R 1 , ..., R N ; r 1 , ..., r n E R 1 , ..., R N ; r 1 , ..., r n
Born-Oppenheimer App r o ximation
Sour ce: Disco v er Magazine Online
© Discover Magazine Online. All rights reserved. This content is excluded from our Creative
25
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair- use / .
Born-Oppenheimer App r o ximation (skinless v ersion)
• mass of n uclei exceeds that of the electr ons b y a factor of 1000 or mor e
• w e can neglect the kinetic energ y
of the n uclei
• tr eat the ion-ion interaction
classicall y
• significantl y simplifies the Hamiltonian f or the electr ons:
Images in public domain.
Born Oppenheimer
This term is just an external potential V(r j )
h 2 n 2
N n Z e 2
1 n n e 2
H
2 m r i
i
R i r j
2
r i r j
i 1 i 1 j 1 i 1 j 1
Solutions
quantum chemistr y
density functional theor y
Molle r -Plesset per turbation theor y MP2
coupled cluster theor y CCSD(T)
Har t r ee App r oach
Write w a v efunction as a simple p r oduct of single par ticle states:
r 1 , ..., r n 1 r 1 2 r 2 .. . n
r n
Har d P r oduct of Easy
Leads to an equation w e can solv e on a computer!
h 2 2
2 m
n
V ext r
e
2
j
r
2
r j r
i i i
d r r r
j 1
28 j i
Har t r ee App r oach
h 2 2
e r
2
j
2
r j r
n
2 m
V ext r
j 1
d r i r i i r
j i
The solution f or each state depends on all the other states (th r ough the Coulomb term).
• w e don ’ t kno w these solutions a priori
• m ust be solv ed iterativ el y:
- guess f orm f or { Ψ i in ( r ) }
- compute single par ticle Hamiltonians
- generate { Ψ i out ( r ) }
- compar e with old
- if diff er ent set { Ψ i in ( r ) } = { Ψ i out ( r ) } and r epeat
- if same , y ou ar e done
Simple Pictu r e ...But...
Interacting Non-Interacting
-
-
-
-
-
-
-
-
After all this w ork, ther e is still one major p r oblem: the solution is fundamentall y w r ong
The fix brings us back to spin!
Symmetr y Holds the K e y
Speculation: e v er ything w e kno w with scientific cer tainty is someho w dictated b y symmetr y .
The r elationship betw een symmetr y and quantum mechanics is par ticularl y striking.
Exchange Symmetr y
• all electrons are indistinguishable
• electrons that made da V inci, Newton, and Einstein who
they were, are identical to those within our molecules
a bit humbling...
• so if
• I show you a system containing electrons
• you look away
• I exchange two electrons in the system
• you resume looking at system
• there is no experiment that you can conduct that will
indicate that I have switched the two electrons
Mathematicall y
• define the exchange operator :
12 1 r 1 2 r 2
1 r 2 2 r 1
• exchange operator eigen values ar e ±1:
12
suppose ^
^ ^
12 12 2
2 1 , or 1.
Empiricall y
• all quantum mechanical states ar e also eigenfunctions of exchange operators
- those with eigen value 1 (symmetric) ar e kno wn as Bosons
- those with eigen value -1 (antisymmetric) ar e kno wn
as F ermions
• p r of ound implications f or materials p r oper ties
- w a v efunctions f or our man y elect r on p r oblem m ust be anti-symmetric under exchange
- implies Pauli exclusion principle
Har t r ee- F ock
• Emplo ying Har tr ee's a pp r oach, but
- enf o r cing the anti-symmetr y condition
- accounting f or spin
• Leads to a r emarkable r esult:
2
h 2
2 V
n
r d r
e r
2
j
2
r j r
n
r
d r
e * r r r
r
2 m
ext
i
s i , s j
r r j i j i i
j 1 j 1
j i j i
• Har tr ee-F ock theor y is the f oundation of molecular orbital theor y .
• It is based upon a choice of w a v efunction that guarantees antisymmetr y betw een elect r ons.
But...Har t r ee- F ock
• neglects impor tant contribution to elect r on energ y (called “cor r elation” energ y)
• difficult to deal with: integral operator ma k es solution complicated
• supe r ceded b y another a pp r oach: density functional theor y
Solutions
quantum chemistr y
density functional theor y
Molle r -Plesset per turbation theor y MP2
coupled cluster theor y CCSD(T)
Solving the Sch r odinger Equation
No matter ho w y ou slice it, the w a v efunction is a beast of an entity to h a v e to deal with.
F or example: consider that w e h a v e n elect r ons populating a 3D space .
Let ’ s divide 3D space into NxNxN=2x2x2 grid points.
T o r econstruct Ψ (r), ho w man y points m ust w e k eep track of?
Solving the Sch r odinger Eq.
N
N
N
divide 3D space into NxNxN=2x2x2 grid points
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair- use/ .
Ψ = Ψ (r 1 , . . . , r n ) # points = N 3n
n=# electr ons |
Ψ (N 3n ) |
1 |
8 |
10 |
10 9 |
100 |
10 90 |
1,000 |
10 900 |
W orking with the Density
The elect r on density seems to be a mor e manageable quantit y .
W ouldn ’ t it be nice if w e could r ef orm ulate our p r oblem in terms of the densit y , rather than the w a v efunction?
Energ y Elect r on Density
E 0 =E[ n 0 ]
W alter K ohn (left), r eceiving the Nobel prize in chemistr y
in 1998.
W h y DFT?
computational expense f or system size N:
Quantum Chemistr y O(N 5 -N 7 )
methods; MP2, CCSD(T)
Density Functional Theor y
Example
O(N 3 ); O(N)
silicon silicon
2 atoms/unit cell 100 atoms/unit cell
DFT : 0.1 sec
CCSD(T): 0.1 sec DFT : 5 hours
CCSD(T): 2000
y ears!!!
MP2: 0.1 sec MP2: 1 y ear
100,000
10,000
1000
100
MP2
QMC
CCSD(T)
10
Exact treatment
1
2003
2007
201 1
2015
Y ear
Number of Atoms
Linear scaling DFT
DFT
W h y DFT?
w a v e function:
Density functional theor y
complicated!
G = G ( → r 1 , → r 2 , . . . , → r N )
elect r on
density:
easy!
n = n ( ⇤ r )
W alter DFT
K ohn 1964
© unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
Density functional theor y
ion
electr on density n
T otal energ y is a functional of the elect r on densit y .
E [ n ] = T [ n ] + V ii + V ie [ n ] + V ee [ n
kinetic ion-electr on
ion-ion electr on-electr on
Density functional theor y
E [ n ] = T [ n ] + V ii + V ie [ n ] + V ee [ n
kinetic ion-ion ion-electr on electr on-electr on
elect r on density n ( ⌅ r ) = Σ | c i ( ⌅ r ) | 2
i
E gr ound stat e = mi n E [ n
c
Find the w a v e functions that minimize the energ y using a functional derivativ e .
Density Functional Theor y
Finding the minim um leads to K ohn-Sham equations
ion potential Har tr ee potential exchange-cor r elation
potential
equations f or non-interacting elect r ons
Density functional theor y
Onl y one p r oblem: v xc not kno wn!
a pp r o ximations necessar y
local density general gradient a pp r o ximation a pp r o ximation
L D A GGA
Self-consistent cycle
K ohn-Sham equations
-
n ( ⌅ r ) =
Σ | c i ( ⌅ r ) | 2
scf loop
i
Modeling softwa r e
name license basis functions pr o/con
ABINIT |
fr ee |
plane w a v es |
v er y structur ed |
ONETEP |
p a y |
W annier functions |
linear scaling |
Wien2k |
p a y |
Y lm + plane w a v es |
v er y accurate |
V ASP |
p a y |
plane w a v es |
fast |
PWscf |
fr ee |
plane w a v es |
fast |
Basis functions
Matrix eigen value equation:
H 1 = E 1
H Σ c i c i = E Σ c i c i
⇥ = Σ c i c i
i
expansion in or thonormalized basis functions
i
∫
∫ d → r ф H Σ Σ
i
c i ф i = E d → r ф c i ф i
j j
i i
Σ H j i c i = E c j
i
H ⇤ c = E ⇤ c
Plane w a v es as basis functions
plane w a v e expansion: G ( → r ) = Σ
j
c e i G ⇧ j · ⇧ r
j
plane wa v e
Cutoff f or a maxim um G is necessar y and r esults in a finite basis set.
Plane w a v es ar e periodic , thus the w a v e function is periodic!
periodic cr ystals: atoms, molecule s I m : age by MIT OpenCourseWare.
P erf ect!!! (next lectur e) be car eful!!!
Put molecule in a big b o x
unit cell
Mak e sur e the separation is big enough, so that w e do not include ar tificial interaction!
Images by MIT OpenCourseWare.
DFT calculations
scf loop
total energ y = -84.80957141 Ry total energ y = -84.80938034 Ry total energ y = -84.81157880 Ry total energ y = -84.81278531 Ry
total energ y = -84.81312816 Ry
exiting loop;
total energ y = -84.81322862 Ry r esult pr ecise enough
total energ y = -84.81323129 Ry
At the end w e get:
1) elect r onic charge density
2) total energ y
• structur e
• bulk modulus binding energies
• shear modulus
r eaction paths
f or ces
• elastic constants pr essur e
• vibrational pr oper ties
• sound v elocity
str ess ...
?
W as m y basis big
enough?
W as m y b o x big
enough?
Did I exit the scf
loop at the right
point?
Co n v ergence
PWscf input
wate r .input
What atoms ar e in v olv ed?
&control
Wher e ar e the atoms sitting?
/ pseudo_dir = ''”
Ho w big is the unit cell?
At what point do w e cut the basis off? When to exit the scf loop?
&system
ibrav = 1
celldm (1) = 15.0
nat = 3
ntyp = 2
occupations = 'fi xed'
/ ecutw fc = 60.0
&electrons
/ conv_thr = 1.0d-8
All possible parameters ar e described in INPUT_P W .
ATOMIC_SPECIES
H 1.00794 h ydrog en .U P F
O 15.9994 oxyg en .U P F
ATOMIC_POSITIONS {bohr} O 0.0 0.0 0.0
H 2.0 0.0 0.0
H 0.0 3.0 0.0
K_POINTS {g amma}
R e vi e w
• Re vie w
• The Man y-body P r oblem
• Har tr ee and Har tr ee-F ock
• Density Functional Theor y
• Computational App r oaches
• Modeling Softwar e
• PWscf
Literatu r e
• Richar d M. Mar tin, Elect r onic Structur e
• Kie r on Bur k e , The ABC of DFT chem.ps.uci.edu/~kie r on/dft/
• wikipedia, “man y-body p h ysics”, “density functional theor y”, “pwscf ”,
“pseudopotentials”, ...
MIT OpenCourseWare http://ocw.mit.edu
3 . 021 J / 1.021J / 10.333J / 18.361J / 22.00J Introduction to Modelling and Simulation
Spring 20 1 2
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .