1.021 , 3.021, 10.333, 22.00 : Introduction to Modeling and Simulation : Spring 2012 Part II Quantum Mechanical Methods : Lecture 2

Quantum Mechanics: Practice Makes Perfect

Jeffrey C. Grossman

Department of Materials Science and Engineering

Massac husetts Institute of T ec hnology

Par t II T opics

1. It s a Quantum W orld: The Theor y of Quantum Mechanics

2. Quantum Mechanics: Practice Mak es P erf ect

3. Fr om Man y-Body to Single-Par ticle; Quantum Modeling of Molecules

4. Application of Quantum Modeling of Molecules: Solar Thermal Fuels

5. Application of Quantum Modeling of Molecules: Hydr ogen Storage

6. Fr om Atoms to Solids

7. Quantum Modeling of Solids: Basic Pr oper ties

8. Advanced Pr op . of Materials: What else can w e do?

9. Application of Quantum Modeling of Solids: Solar Cells Par t I

10. Application of Quantum Modeling of Solids: Solar Cells Par t II

11. Application of Quantum Modeling of Solids: Nanotechnolog y

Motivation

electr on in bo x

?

Wavefunctions for various values of n in an infinite square well.

Image adapted from Wikimedia Commons , http://commons.wikimedia.org .

Image of NGC 604 nebula is in the public domain. Source: Hubble Space Telescope Institute (NASA). Via Wikimedia Commons .

Lesson outline

Re vie w

A r eal w orld example

Ev er ything is spinning

Pauli s exclusion

T his image is in the public domain. Source: Wikimedia Commons .

P eriodic table of elements

R e vi e w: W h y QM?

P r oblems in classical p h ysics that led to quantum mechanics:

“classical atom”

quantization of p r oper ties

w a v e aspect of matter

(black-body radiation), ...

R e vi e w: Quantization

_

_

_ _

_

_

_

_

_

_

_

_

_

photoelectric E e

eff ect

r A

Image by MIT OpenCourseWare.

E = n ( - A ) = h ( v - v A )

h = 2 7 n = 6 . 6 · 10 - 34 W atts ec. 2

Einstein: photon E = n w

“Classical atoms”

e -

+

p r oblem:

accelerated charge causes radiation, atom not stable!

h yd r ogen atom

From Wikipedia . License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair- use/ .

R e vi e w: W a v e aspect

light matter

w a v e character par ticle character

_

_

_ _

_

_

_

_

_

_

_

_

_

Image by MIT OpenCourseWare.

Image in public domain. See Wikimedia Commons .

Double-Slit

Courtesy of Bernd Thaller. Used with permission.

R e vi e w: W a v e aspect

par ticle : E and momentum p

w a v e: fr equency and w a v e v ector k

E = h v = n

p = n k =

h k

A | k |

de B r oglie: fr ee par ticle can be described a as

plane w a v e

1 ( r , t ) = Ae i ( k · r - w t )

with

A = h mv

11

R e vi e w: Interp r etation of QM

1 ( r , t ) w a v e function (complex)

| 1 | 2 = 1 1 * interpr etation as pr obability to find par ticle!

(r, t)

2

(r, t)

1 1 dV = 1

Image by MIT OpenCourseWare.

W a v e Par ticles Hitting a W all

Courtesy of Bernd Thaller. Used with permission.

Elect r on W a v e/Par ticle Video

Courtesy of cassiopeiaproject.com .

R e vi e w: Schrödinger equation

a w a v e equation:

second derivativ e in space

first derivativ e in time

k 2

2 m D

2

+ V ( r , t ) G ( r , t ) = i k G ( r , t )

6 t

6→

2

1 2

H = - 2 m

+ V ( r , t ) =

Hamiltonian

p 2 p = - i 1

= 2 m

+ V = T + V

Schrödinge r ...

From Wikipedia . License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair- use / .

16

R e vi e w: Schrödinger equation

H time independent: 1 ( r , t ) = 1 ( r ) · f ( t )

f ˙ ( t ) H 1 ( r r )

i n = = const. = E f ( t ) 1 ( r r )

H G ( r ) = E G ( r )

k

/ ( r , t ) = / ( r ) · e -

i E t

time independent Schrödinger equation stationar y Schrödinger equation

Par ticle in a b o x

Schrödinger equation

boundar y conditions general solution

It s r eal!

(theor y)

Ti-O Bond

Cu-O Bond (experiment)

Reprinted by permission from Macmillan Publishers Ltd: Nature. Source: Zuo, J., M. Kim, et al. "Direct O bservation of d-orbital

19 Holes and Cu-Cu Bonding in Cu2O." Nature 401, no . 6748 (1999): 49-52. © 1999.

Screenshot of Scientific American article "Observing Orbitals" removed due to copyright restrictions; read the article online .

What s this g ood f or?

Image in the public domain.

Hyd r ogen: a r eal w orld example .

The Hyd r ogen Futu r e?

Image s in the public domain.

Histor y of Hyd r ogen

© ACS Publications. From: Grochala, W., and Peter P. Edwards. Chemical Reviews 104

23 (2004): 1283-1315. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use / .

Ho w large of a gas tank do w e want?

The “D r op T est”

.

Figure 1 © Toyota Motor Corporation, "Drop Test" © EDO Canada. All rights reserved. This content is excluded

The h yd r ogen atom

?

elect r ostatics:

Coulomb potential

r

+

e -

stationar y Schrödinger equation

w a v e functions possible energies

The h yd r ogen atom

stationar y

Schrödinger equation H l = E l

T + V G = E G

k 2 2

just sol v e

2 m D

k 2 2

+ V G ( r ) = E G ( r )

0

e 2

2 m D

4 v s r

G ( r ) = E G ( r )

The h yd r ogen atom

choose a mor e suitable coor dinate system:

spherical coor dinates

G ( r ) = G ( x, y , z )

= G ( r , θ , ф )

© R. Nave. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use / .

The h yd r ogen atom

Schrödinger equation in spherical coor dinates:

© R. Nave. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use / .

28

The h yd r ogen atom

© R. Nave. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use / .

solv e b y separation of variables:

The h yd r ogen atom

separation of variables

The h yd r ogen atom

R ( r )

Solution exists

if and only i f .....

n = 1, 2, 3 .........

Main quantum number

P ( )

Solution exists

if and only i f .....

l = 0, 1, 2, 3 n -1

Orbital qua ntum number

F ( )

Solution exists

if and only i f .....

m l = - l , - l +1,... + l

Magnetic qua ntum number

Image by MIT OpenCourseWare.

The h yd r ogen atom

q u a n t u m n u m b e r s

n

l

m l

F( )

P( )

R(r)

1

0

0

1 2

1

2

2 e -r/a 0 a 3/ 2

0

2

0

0

1 2

1

2

1 r -r / 2 a 0

2 2 a 3/ 2 2- a e

0 0

2

1

0

1 2

6 co s

2

1 r e -r / 2 a 0

2 6 a 3/ 2 a 0

0

2

1

1

1 e ±i

2

3 sin

2

1 r e -r / 2 a 0

2 6 a 3/ 2 a 0

0

Image by MIT OpenCourseWare.

The h yd r ogen atom

standar d notation f or states:

"Sharp"

s

l = 0

"Principal"

p

l = 1

"Diff use"

d

l = 2

"Funda mental"

f

l = 3

For example, if n = 2, l = 1, the state is designated 2p

Image by MIT OpenCourseWare.

The h yd r ogen atom

q u a n t u m n u m b e r s

n

l

m l

F( )

P( )

R(r)

1

0

0

1 2

1

2

2 e -r/a 0 a 3/ 2

0

2

0

0

1 2

1

2

1 r -r / 2 a 0

2 2 a 3/ 2 2- a e

0 0

2

1

0

1 2

6 co s

2

1 r e -r / 2 a 0

2 6 a 3/ 2 a 0

0

2

1

1

1 e ±i

2

3 sin

2

1 r e -r / 2 a 0

2 6 a 3/ 2 a 0

0

Image by MIT OpenCourseWare.

The h yd r ogen atom

http://ww w .orbitals.com/orb/orbtable .htm

Courtesy of David Manthey. Used with permission. Source: http://www.orbitals.com/orb/orbtable.htm .

The h yd r ogen atom

Energies:

37 © R. Nave. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use / .

The h yd r ogen atom

© unknown. All rights reserved. This content is excluded from our Creative Commons

38

The h yd r ogen atom

39 © R. Nave. All rights reserved. This content is excluded from our Creative Commons

Atomic units

1 eV = 1.6021765 -19 J

1 Rydberg = 13.605692 eV = 2.1798719 -18 J

1 Har tr ee = 2 Rydberg

1 Bohr =5.2917721 -11 m

Atomic units (a.u.) :

Energies in Ry Distances in Bohr

Also in use: 1 Å =10 -10 m, nm= 10 -9 m

40

Slightl y Inc r eased Complexity

H G ( r ) = E G ( r )

Anal ytic solutions become extr emel y complicated, e v en f or simple systems.

41

Next? Helium!

e -

r 1 r 12

-

H 1 = E 1

+ e

r 2 H 1

+ H 2

+ W G ( r 1

, r 2 ) = E G ( r 1

, r 2 )

T 1 + V 1 + T 2 + V 2 + W G ( r 1 , r 2 ) = E G ( r 1 , r 2 )

k 2 2

e 2 k 2 2 e 2

e 2

0

2 m D 1

4 v s 0 r 1

2 m D 2

4 v s 0 r 2

+ 4 v s

r 12

G ( r 1 , r 2 ) = E G ( r 1 , r 2 )

cannot be solv ed anal yticall y

p r oblem!

Solution in general?

Onl y a f e w p r oblems ar e solvable anal yticall y .

W e need a pp r o ximate a pp r oaches:

per turbation theor y

matrix eigen value equation

Solution in general?

P er turbation theor y:

small

H = H 0 + Z H 1

w a v e functions and energies ar e kno wn

w a v e functions and energies will be similar to those of H o

Solution in general?

Matrix eigen value equation:

H 1 = E 1

H Σ c i c i = E Σ c i c i

= Σ c i c i

i

expansion in or thonormalized basis functions

i

d r c H Σ Σ

i

c i c i = E d r c c i c i

j j

i i

Σ H j i c i = E c j

i

H c = E c

E v er ything is spinning ...

Stern–Gerlach experiment (1922)

F = D E

= D m · B

Image courtesy of Teresa Knott.

E v er ything is spinning ...

In quantum mechanics par ticles can h a v e a magnetic moment and a ”spin”

magnetic moment

m

spinning charge

E v er ything is spinning ...

conclusion f r om the Stern-Gerlach experiment

f or elect r ons: spin can ON L Y be

up d o wn

E v er ything is spinning ...

ne w quantum n umber : spin quantum n umber f or elect r ons: spin quantum n umber can ON L Y be

up d o wn

Spin Histor y

Disco v er ed in 1926 b y Goudsmit and Uhlenbeck

Part of a letter by L.H. Thomas to Goudsmit on Mar ch 25 1926 (sour ce: W ikipedia).

© Niels Bohr Library & Archives, American Institute of Physics. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use / .

50

Pauli s exclusions principle

T w o elect r ons in a system cannot h a v e the same quantum n umbers!

quantum n umbers: main n: 1,2,3 ...

orbital l: 0,1,...,n-1

magnetic m: -l,...,l spin: up , do wn

h ydr ogen

... ... ... ...

3s 3p 3d

2s 2p

1s

P eriodic table of elements

Connection to materials?

optical p r oper ties of gases

© unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use / .

R e vi e w

Re vie w

A r eal w orld example!

Ev er ything is spinning

Pauli s exclusion

P eriodic table of elements

This image is in the public domain. Source: Wikimedia Commons .

Literatu r e

Gr eine r , Quantum Mechanics: An Int r oduction

F e ynman, The F e ynman Lectur es on P h ysics

wikipedia, h yd r ogen atom”, “Pauli exclusion principle”,

“periodic table”, ...

MIT OpenCourseWare http://ocw.mit.edu

3 . 021 J / 1.021J / 10.333J / 18.361J / 22.00J Introduction to Modelling and Simulation

Spring 20 1 2

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .