1.021 , 3.021, 10.333, 22.00 I ntroduc tion to Modeling and Simulation Part I C ontinuum and partic le me thods

Applications to biophysics and bionanomechanics (cont’d)

Lecture 11

Markus J. Buehler

Laboratory for Atomistic and Molecular Mechanics Department of Civil and Environmental Engineering Massachusetts Institute of Technology

Content overview

I. Particle and continuum me thods

1. Atoms, molecul e s, chemistry

2. Continuum modeling approac hes and solution approaches

3. Statistical mechanics

4. Molecular dynamics, Monte Carlo

5. Visualization and data analysis

6. Mechanical proper ties applic ation: how things fail (and how to prevent it)

7. Multi-scale modeling par adigm

8. Biological systems (simulation in biophysics) h ow proteins work and how to model them

II. Quantum mechanical methods

1. It’s A Q uantum World: T he Theory of Quantum Mechanics

2. Quantum Mechanics: Practice Makes Perfect

3. The Many-Body Problem: Fr om Many-Body to Single- Particle

4. Quantum modeling of materials

5. From Atoms to Solids

6. Basic pr operties of mater i als

7. Advanced proper ties of materials

8. What else can we do?

Lectures 2-13

Lectures 14-26

Overview: Material covered so far…

Lecture 1: B road introduction to IM/S

Lecture 2 : Introduction t o atomistic and conti nuum modeling (mult i-scale modeling paradigm, difference between continuum and atomis tic approach, case study: d iffusion)

Lecture 3 : Basic statistical mechani cs p roperty calculation I (property calculati o n: microscopic states vs. macroscopic properties , ensembles, probability density and partition functi on)

Lecture 4 : Prope rty calculation II (Monte Carl o, advanced property calculati o n, introduction to chemical interacti ons)

Lecture 5: How to model chemic al intera ctions I (exampl e: movi e of copper deformation/disl ocations, etc.)

Lecture 6: How to model ch emic al intera ctions II (EAM, a bit of ReaxFF—chemical reacti ons)

Lecture 7: Appli cation to mo del i ng brittle materials I

Lecture 8: Appli cation to mo del i ng brittle materials II

Lecture 9: Appli cation A pplications to materials failure

Lecture 10: Appl ications to bi ophysics an d bi onanomechanics

Lecture 11: Appl ications to bi oph ysics an d bi onanomechanics (cont’ d)

Lecture 11: Applications to biophysics and bionanomechanics (cont’d)

Outline:

1. Force fields for proteins: (brief) review

2. Fracture of protein domains Bell model

3. Examples m aterials and applications

Goal of today’s lecture:

Fracture model for protein domains: “Bell model”

Method to apply loading in molecular dynamics simulation (nanomechanics of single molecules)

Applications to disease and other aspects

1. Force fields for proteins: (brief) review

Chemistry, structure and properties are linked

Chemical structure

Cartoon

Presence of various chemical bonds:

C ovalent bonds (C-C, C-O, C-H, C-N..)

Electrostatic interactions (charged amino acid side chains )

H -bonds (e.g. between H and O)

v dW interactions (uncharged parts of molecules)

Model for covalent bonds

1 k

( ) 2

stretch

1 k

2

stretch

( r r ) 2

0

rot

1 k

2

rot

( 1 cos ( ))

bend

2 bend 0

Courte s y of the E M Bn et Ed u cati o n & Trai ning Commit t ee. Used with permissi on.

Images cr eated for the CHARMM tutori a l by Dr. Dmit ry Kuz n e ts o v (Swi ss Insti tute of Bi oi nformati cs ) for t h e E M Bn et Edu c ati on & Trainin g commit t ee ( http://www.embn et.org )

Summary: CHARMM potential (pset #3)

=0 for proteins

U total

U Elec

U Covalent

U Metallic

U vdW

U H bond

U : Coulomb potential

( r )

q i q j

Elec

ij r

stretch

1 k

2

stretch

1 ij

2

( r r 0 )

U U U U

1 k ( ) 2

Covalent stretch

bend

rot

bend 2 bend 0

rot

1 k

2

rot

( 1 cos ( ))

12 6

r ij

U vdW :

LJ potential

( r ij )

4

r

ij

R

12 R

10

U H bond :

( r

) D

5 H bon d

6 H bon d

cos 4 ( )

ij H

bond

r ij

r ij

DHA

8

2. Fracture of protein domains Bell model

9

Experimental techniques

Courte sy of El se vie r, Inc., h t t p ://www. scien c e dir ec t . c o m . Used wi th permission. 10

How to apply load to a molecule

(in molecular dynamics simulations)

Steered molecular dynamics (SMD)

Steered molecular dynamics used to apply forces to protein structures

v

Virtual atom

moves w/ velocity v k

x

end point of molec u le

Steered molecular dynamics (SMD)

Steered molecular dynamics used to apply forces to protein structures

v

Virtual atom f

moves w/ velocity v k

x

x

f k ( v t x )

v t

end

SMD spring constant

point of

molec u le

f k ( v t x )

SMD

deformation speed vector

time

Distance between end point of molecule and virtual atom

k

x

v

k

x

SMD mimics AFM single molecule experiments

Atomic force microscope

v

f

x

SMD is a useful approach to probe the nanomechanics of proteins (elastic deformation, “plastic” permanent deformation, etc.)

Example: titin unfolding (CHARMM force field)

Unfolding of titin molecule

X : breaking

Force (pN)

X

X

Titin I27 domain: Very resistant to unfolding due to parallel H-bonded strands

Displacement (A)

16

Keten and Buehler, 2007

Protein unfolding - R eaxFF

F

AHs

M. Buehler, JoMMS, 2007

PnIB 1AKG

F

ReaxFF modeling

17

Protein unfolding - CHARMM

Covalent bonds don’t break

CHARMM modeling

M. Buehler, JoMMS, 2007 18

Comparison CHARMM vs. ReaxFF

M. Buehler, JoMMS, 2007 19

Application to alpha-helical proteins

20

Vimentin intermediate filaments

Image cour tes y o f Bluebie Pixie on F lic k r . L i cense: C C -BY.

Sour c e : Qi n, Z . , L . Krepl a k, and M. Bu ehl e r. "H i e rar c hi cal Struct ur e Co n t r o l s N a no mech an ic a l P r op er t i es o f Vime n t in I n t e r m e d ia t e F i l a me n t s . " PLoS ON E 4 , no. 1 0 ( 2009) . d o i:10 .1 371 /journal.pone . 0007 294. L i c ense CC BY.

Image cour tes y o f G r een m ons t er on F lic k r .

I m a g e o f n e ur on a n d c e ll nuc leus © s ou rces unkn ow n . All r ig h t s res e rv ed. Thi s c o ntent i s ex cl u d ed from our Creative Common s lic ense . F o r mo re in fo r m a t io n , s ee htt p :/ / o cw.mi t .edu /fai ru se .

Alpha-helical protein: stretching

ReaxFF modeling of AH stretching

M. Buehler, JoMMS, 2007

A: Firs t H-bonds break (turns open) B: Stretch covalent backbone

C: Backbone breaks 22

Coarse-graining approach

Describe interaction between “beads” and not “atoms”

Same concept as force fields for atoms

23

See also: http://dx.doi.org/10. 1371/journal.pone.0006015

Case study: From nanoscale filaments to micrometer meshworks

Movie: MD simulation of AH coiled coil

Imag e removed du e t o copyrigh t r e s t ri ctio ns . Pl e a se see ht tp://d x.d o i.org/10.1 103/PhysRevLet t.104.1 98304 .

See a l so : Z . Q i n , AC S Nano, 2011, and Z . Q i n Bio N anoSc i ence , 2 010.

What about varying pulling speeds?

Changing the time-scale of observation of fracture

12,000

1,500

1,000

500

8,000

0 0

0.2

0.4

4,000

0 0

50

100

150

200

Strain (%)

v = 65 m/s v = 45 m/s v = 25 m/s v = 7.5 m/s v = 1 m/s model

model 0.1 nm/s

Force (pN)

Variation of pulling speed

Ima g e by MIT OCW . Aft e r Ackbarow and Bueh ler, 2007.

Force at AP (pN)

Force at angular point f AP =fracture force

f AP ~ ln v

Pulling speed (m /s)

General results…

Rupture force vs. pulling speed

f AP

R ep r i n t e d by p er m i s s i on fr o m M a c m illa n P u b l i s hers L t d : N a t u re M a t e r i a l s .

Sour c e : Buehl e r, M. ,and Yun g , Y . " C hemom e c hani c al Behavi ou r of Protei n C o n s ti tuent s ." Nature Mater ial s 8, no. 3 (2 0 0 9 ) : 1 7 5 - 8 8 . © 2 0 09.

How to make sense of these results?

A few fundamental properties of bonds

Bonds have a bond energy ( energy barrier to break)

Arrhenius relationship gives probability for energy barrier to be overcome, given a temperature

E b

p exp

k B T

All bonds vibrate at frequency

Bell model

Probability for bond rupture (Arrhenius relation)

E b

p exp

k B T

Boltzmann constant

temperature

distance

height

Bell model

Probability for bond rupture (Arrhenius relation)

f f AP

p exp

E b f x B

k B T

force applied ( lower energy barrier )

Boltzmann constant

temperature

distance

height

Bell model

Probability for bond rupture (Arrhenius relation)

p exp

E b f x B

k B T

0

Off-rate = probability times vibrational frequency

( E b f x b

exp ) 1

0 k T

b

0 p

1 1 0 13 1 / sec

Bell model

Probability for bond rupture (Arrhenius relation)

p exp

E b f x B

Bell-EB

k B T

Off-rate = probability times vibrational frequency

1

( E b f x b ) 13

0 p

0

exp

k b T

0 1 10

1 / sec

“How often bond breaks per unit time”

Bell model

Probability for bond rupture (Arrhenius relation)

p exp

E b f x B

Bell-EB

k B T

Off-rate = probability times vibrational frequency

( E b f x b ) 1 13

0 p

0

exp

k b T

0 1 10

1 / sec

bond lifetime (inverse of off-rate)

Bell model

t ???

x

x

x / t v

t

x / t v

pulling speed (at end of molecule)

Bell model

t

x x

broken turn

x / t v

x

x t

x / t v

pulling speed (at end of molecule)

Structure-energy landscape link

x b

Bell-EB

x x b 1

t

( E b

f x b )

0

exp

k b T

Bell model

x / t v

x

broken turn

t

x x b t

Bond breaking at

x b (lateral applied displacement):

( E b f x b )

x b

0

exp

k b T

x b

x / t v

1 /

pulling speed

Bell model

( E b f x b )

0 exp

k b T

x b v

Solve this expression for f :

Bell model

( E b f x b )

0 exp

k b T

x b v

Solve this expression for f :

( E b

f x b )

ln(

x )

ln v

ln(..)

0 b

k b T

E b f x b k b T ln v ln( 0

x b )

E b k b

T ln v

ln( 0

x b )

k b T

k b T E b

f

x b

ln v

x b

x b k b T

ln( 0

x b )

k b T

k b T

E b

f ln v

x b

ln( 0

x b

x b )

k b T

k b T

k b T

E b

f ln v

x b

ln 0

x b

x b

exp

k b T 43

Simplification and grouping of variables

Only system parameters, [distance/length]

k b T

k b T

E b

f ( v ; x b , E b )

ln v

x b

ln 0

x b

x b

exp

k b T

: v 0

0

x b

exp

E b

k b T

Bell model

( E b f x b )

0 exp

k b T

x b v

Results in:

f ( v ; x , E

) k b T

ln v

k b T

ln v

a ln v b

x

x

b b 0

b b

a k B T

x b

x

b k B T

ln v

0

b

f ~ ln v behavior of strength

f ( v ; x b , E b ) a ln v b

Force at AP (pN)

Pulling speed (m /s)

E b = 5.6 kcal/mol and x b = 0.17 Ǻ (results obtained from fitting to the simulation data)

f ( v ; x b , E b ) a ln v b

E b

Force at AP (pN)

Scaling with E b : shifts curve

k B T

k B T

Pulling speed (m /s)

E b

a b

x x

ln v 0

v 0 0

x b

exp

k

T

b b 47 b

f ( v ; x b , E b ) a ln v b

x b

Force at AP (pN)

Scaling with x b : changes slope

k B T

k B T

Pulling speed (m /s)

E b

a b

x b x b

ln v 0

v 0 0

x b

exp

4 8

k b T

Simulation results

Courtesy of IOP Publishing, Inc. Used with permission. Source: Fig. 3 from Bertaud, J., Hester, J. et al. "Energy Landscape, Structure and

Rate Effects on Strength Properties of Alpha-helical Proteins." J Phys.: Condens. Matter 22 (2010): 035102. doi:10.1088/0953-8984/22/3/035102.

Bell-EB

Mechanisms associated with protein fracture

Change in fracture mechanism

Single AH structure

FDM : Sequential HB break ing

SDM : Concurrent HB break ing

(3..5 HBs)

Simulation span: 250 ns

Reaches deformation speed O(cm/sec)

Courtes y of Nati onal Academ y of Sci e n c e s , U. S. A. Use d w i th permi s si o n . Sour c e : Ackbarow, Theo dor, et al. " H i e rar c hi es, Mul t i p l e Ener gy Barri er s, and Ro bu stn e s s Go v e r n t h e Fractu r e Mec h ani c s of Al pha- hel i cal and Beta- s h eet Protei n D o mai n s. " PN A S 104 ( O c t obe r 1 6 , 20 0 7 ) : 1 6 4 10 - 5 . Copy ri g h t

200 7 National Acad e m y of Scie nces, U. S . A. 51

Analysis of energy landscape parameters

Energy single H-bond: 3-4 kcal/mol

What does this m e an???

52

Courtes y of Nati onal Academ y of Sci e n c e s , U. S. A. Use d w i th permi s si o n . Sour c e : Ackbarow, Theo dor, et al. " H i e rar c hi es, Mul t i p l e Ener gy Barri er s, and Ro bu stn e s s Go v e r n t h e Fractu r e Mec h ani c s of Al pha- hel i cal and Beta- s h eet Protei n D o mai n s. " PN A S 104 (O ctober 16, 2007): 16410-5. Copy right 200 7 National Acad e m y of Scie nces, U. S . A.

H- bond rupture dynamics: mechanism

Courtes y of Nati onal Academ y of Sci e n c e s , U. S. A. Use d w i th permi s si o n . Sour c e : Ackbarow, Theo dor, et al. " H i e rar c hi es, Mul t i p l e Ener gy Barri er s, and Ro bu stn e s s Go v e r n t h e Fractu r e Mec h ani c s of Al pha- hel i cal and Beta- s h eet Protei n D o mai n s. " PN A S 104 (O ctober 16, 2007): 16410-5. Copy right 200 7 National Acad e m y of Scie nces, U. S . A.

H- bond rupture dynamics: mechanism

I: All HBs are intact

Courtes y of Nati onal Academ y of Sci e n c e s , U. S. A. Use d w i th permi s si o n . Sour c e : Ackbarow, Theo dor, et al. " H i e rar c hi es, Mul t i p l e Ener gy Barri er s, and Ro bu stn e s s Go v e r n t h e Fractu r e Mec h ani c s of Al pha- hel i cal and Beta- s h eet Protei n D o mai n s. " PN A S 104 (O ctober 16, 2007): 16410-5. Copy right 200 7 National Acad e m y of Scie nces, U. S . A.

II: Rupture of 3 HBs s imultaneous ly ; within 20 ps

III: Rest of the AH relaxes s lower deformation…

3. Examples materials and applications

E.g. disease diagnosis, mechanisms, etc.

Genetic diseases defects in protein materials

Defect at DNA level causes structure modification

Question: how does such a structure modification influence material behavior / material properties?

ACGT

Four letter code “DNA”

DEFECT IN SEQUENCE

.. - P roline - S erine Proline - Alanine - . .

Sequence of amino acids “polypeptide”

(1D structure)

CHANGED

Folding (3D structure) STRUCTURAL

DEFECT

Structural change in protein molecules can lead to fatal diseases

Single point mutations in IF structure causes severe diseases such as rapid aging disease progeria H GPS ( Nature , 2003; Nature , 2006, PNAS , 2006)

Cell nucleus loses stability under mechanical (e.g. cyclic) loading, failure occurs at heart (fatigue)

Genetic defect:

Imag e of pat i ent removed du e t o c o pyrigh t r e stri ctio ns .

substitution of a single DNA base: Amino acid guanine is switched to adenine

Structural change in protein molecules can lead to fatal diseases

Single point mutations in IF structur e causes severe diseases such as rapid aging disease progeria H GPS ( Nature , 2003; Nature , 2006, PNAS , 2006)

Cell nucleus loses stability under cyclic loading

Failure occurs at heart (fatigue)

Experiment suggests that mechanical properties of nucleus change

Image of patient rem ov e d due to co pyri ght restri cti o n s.

Fractures

Courtes y of Nati onal Academ y of Sci e n c e s , U. S. A. Use d w i th permi s si o n . Sour c e : Dahl, et al. "Di stin ct Struct ura l and Mec h an i cal Properti es of the Nu cl ear L a min a in Hu t c h i nson –G ilf o r d P r og er ia Syn d ro me ." PNAS 10 3 ( 2 0 0 6) : 1 0 27 1 - 6.

C o py ri g h t 20 0 6 Nati onal Aca d em y of S c i e n c e s , U.S.A. 58

Mechanisms of progeria

Images co u rtesy of Nat i on al Academy o f Sc ien c es, U. S. A. Used with permissi on.

Sour c e : Dahl, et al. "Di stin ct Struct ura l and Mec h an i cal Properti es of the Nu cl ear Lami na in Hu t c h i nson–G ilfo r d P r og er ia Syn d r o me." PNA S 1 03 ( 2 0 06): 1 0271 -6 . Cop y ri ght 2 0 0 6 N a tional Acad e m y of Scie nces, U. S . A.

Deformation of red blood cells

Courte sy of El se vie r, Inc., h t t p ://www. scien c e dir ec t . c o m . Used wi th permission.

Stages of malaria and effect on cell stiffness

Disease stages

H-R BC (healthy)

Courte sy of El se vie r, Inc., h t t p ://www. scien c e dir ec t . c o m . Used wi th permission.

Pf-U-RBC (exposed but not infected) Pf-R-pRBC (ring stage)

Pf-T-pRBC

( trophozoite s tage)

Pf-S-pRBC

(schizont stage)

Consequence: Due to r ig idi ty, RBCs can not move easi ly th rough

capillar i es in the lung 61

Cell deformation

Courte sy of El se vie r, Inc., h t t p ://www. scien c e dir ec t . c o m . Used wi th permission.

Deformation of red blood cells

Courte sy of El se vie r, Inc., h t t p ://www. scien c e dir ec t . c o m . Used wi th permission.

Mechanical signature of cancer cells (AFM)

Healthy cells

=stiff

Cancer cells

=soft

R e print e d by permis sio n from Macmillan Publish e rs L td: Nature Nanot e chn o logy.

Source: Cross, S., Y . Ji n, et al . "Nanomechan i cal Anal ysis of Cells from Cancer P a t i ent s." Nature Nanot e chn o l o gy 2, no. 12 (2007): 780-3. © 2007.

MIT OpenCou rse Wa re ht t p :// ocw.mit.edu

3.021 J / 1.021J / 10.333J / 18.361J / 22.00J I ntroduction to Modeli ng and Simulati on

Sp r i ng 2012

F o r in fo r m a t ion about c i ting these ma te ria l s o r our Ter m s o f use , vis i t: htt p :// oc w. mit.edu/ t e rms .