SC A TTERING

INTERACTION OF RADIATION WITH MATTER

1

CHARGED P A R TICLES IN M A TTER

Charged particles interact mostly with the electronic cloud

Alpha

Small energy loss, but very frequent collisions

2

CHARGED P A R TIC LES IN M A TTER

Classical, non-relativistic collision s of charged particles with electrons

Conservation of energy and mom entum

Bef or e c ollision v

A f t er c ollision

v’  v

v e v

Charged particle looses a tiny fraction of its original energy

1

E = m

v 2 =

1

m (2 v

) 2 = 4 m e E

! E

= 4 m e 1

2 e e

2 e

m

E m

3

COULOMB INTER A CTION

4

S T OPPING P O WER

Integrate over all impact parameters b

Lower bound (closest approach max energy lost):

Upper bound: Bohr radius (from ionization energy)

5

S T OPPING RANGE

1. Thousands of events (collisions) are needed to ef fectively slow down and stop the alpha particle

2. As the alpha particle is barely perturbed by individual collisions, the particle travels in a straight line.

3. The collisions are due to Coulomb interaction, which is an infinite-range interaction. Then, the alpha particle interacts simultaneously with many electrons, yielding a continuous slowing down a certain stopping range.

4. The electrons which are the collision targets get ionized, thus they lead to a visible trail (e.g. in cloud chambers)

6

RUTHERFORD SC A TTERING

ANIM A TION

7

RUTHERFORD SC A TTERING

Classical x-section:

d σ 2 π bdb

alp h a

v

b

r min

=

d d

d Nucleus x

Momentum change: p = 2 mv 0 sin 2

Conservation of angular momentum

~ zZ e 2 r ˆ

Coulomb interaction:

d p ~ = F d t =

4 ⇡✏ 0

| r 2 | dt

p

p=m v 0

p

r

d Nucleus

 

x

8

COULOMB SC A TTERING

Cross-section:

d σ 2 2

zZ e θ

= (4 T a ) 2 sin 4

d 4 πϵ 0 2

0

p

p p 3 p

4 2 4

Why Rutherford used Gold in the experiment?

9

MIT OpenCourseWare http://ocw.mit.edu

22.02 Introduction to Applied Nuclear Physics

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .