GAMMA DEC A Y
1
gLI£TR0hA0hETIC
S P E C +1U 1
IE F 1E @ TPEY
Iñ ’ G'R RE D BY“+*
, 1B 1R P TiO g gPf=-'*19A: XKCD.COM
Courtesy of xkcd.com . License CC BY-NC.
ELECTR OM A GNETIC SPECTRUM
Energy (eV)
μ eV meV eV keV MeV Te V
10 -6 10 -3 1 10 3 10 6 10 9
3
Public domain image (source: NASA)
DIPOLE RADI A TION
Rate from Fermi’ s Golden Rule + Density of states:
2 ⇡
W = ~
| h f | V ˆ
| i i | 2
⇢ ( E f ) =
ω 3 2
2 ⇡ c 3 ~ | h r ˆ i |
sin 2
✓ d ⌦
Integrating over angles:
λ ( E 1) =
4 e 2 ω 3
3 ~ c 3
| h r i | 2
4
DIPOLE APPR O XIM A TION
In deriving the dipole emission formula we only kept lowest order expansion:
k
A ~ a a † e i ~ k · ~ r ~✏
k ≈ a † (1 + i ~ k · ~ r + . . . ) ~✏
k → a † ~✏ k
k
k
This yields the typical dipole emission pattern:
W a sin ✓ 2 d ⌦
In QM the angular distribution is related to the photon angular momentum
5
BE Y OND THE DIPOLE
Higher order terms in the expansion give rise to gamma emission
with dif ferent angular-dependence pattern
and higher angular momentum for the gamma photon emitted
~ † i ~ k · ~ r
† X ( i ~ k · ~ r ) `
A a a k e
~✏ k ≈ a k ` !
`
~✏ k
Each l term contributes to a dif ferent decay rate.
6
MU L TIPOLE RADI A TION
Electric multipole
8 ⇡ ( ` + 1 ) e 2
✓ E ◆ 2 ` +1 ✓ 3 ◆ 2
D ˆ E 2 `
A ( E ` ) =
` [(2 ` + 1) ! ! ] 2 ~ c ~ c ` + 3
D | ~ r ˆ | E ⇡ R 0 A 1 / 3
c | ~ r |
Rates: A ( E 1) = 1 . 0 ⇥ 10 14 A 2 / 3 E 3 A ( E 2) = 7 . 3 ⇥ 10 7 A 4 / 3 E 5 A ( E 3) = 34 A 2 E 7
A ( E 4) = 1 . 1 ⇥ 10 - 5 A 8 / 3 E 9
7
MU L TIPOLE RADI A TION
Magnetic multipole
> ( M ` ) =
` [(2 ` + 1)! ! ] 2 ~ c ~ c ` + 3
8 ⇡ ( ` + 1 ) e 2
E 2 ` +1 ✓ 3 ◆ 2
c
| ~ r |
µ p —
D ˆ E 2 ` - 2 ~ ✓ 1 ◆
m p
c
` + 1
Rates: λ ( M 1) = 5 . 6 ⇥ 10 13 E 3 λ ( M 2) = 3 . 5 ⇥ 10 7 A 2 / 3 E 5 λ ( M 3) = 1 6 A 4 / 3 E 7
λ ( M 4) = 4 . 5 ⇥ 10 - 6 A 2 E 9
8
WHICH TRANSITION?
The lowest multipole dominates:
Lower multipoles decay faster (higher rates)
Electric multipoles are faster than magnetic multipoles
➡ Why don’t we always only observe electric dipole (E1) radiation?
9
SELECTION RULES
The multipole l is related to the gamma angular momentum
the angular momentum must be conserved in gamma decay
Possible l : | I f — I i | ≤ ` g ≤ I f + I i
Parity: (-1) l for Electric and (-1) l-1 for Magnetic: parity must be conserved, Π γ = Π i Π f
10
WHICH TRANSITION?
The lowest permitted multipole dominates
Electric multipoles are more probable than the same magnetic multipole by a factor 100 ) ( E l )
) ( M l )
⇡ 10 2
Emission from the multipole l +1 is 10 -5 times less probable than the l -multipole emission
) ( E, l + 1)
⇡ 10 - 5 ,
) ( M, l + 1)
⇡ 10 - 5
) ( E l ) ) ( M l )
11
WHICH TRANSITION?
Combining the two rules:
λ ( E, l + 1)
⇡ 10 — 3 ,
λ ( M, l + 1)
⇡ 10 — 7
λ ( M l ) λ ( E l )
Thus E2 competes with M1
But M2 does not compete with E1
12
INTERNAL CONVERSION
In some cases energy is not released in the form of gamma photons, but carried away by an electron:
A X ⇤ ! A X +
+ e -
Z Z
This process is called Internal Conversion
It is the only process possible, when selection rules do not allow any of the multipole transitions:
e.g. even-even nuclides, decay from a 0 + level
the photon cannot have zero angular momentum.
13
MIT OpenCourseWare http://ocw.mit.edu
22.02 Introduction to Applied Nuclear Physics
Spring 2012
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .