GAMMA DEC A Y

1

gLI£TR0hA0hETIC

S P E C +1U 1

IE F 1E @ TPEY

G'R RE D BY“+*

, 1B 1R P TiO g gPf=-'*19A: XKCD.COM

Courtesy of xkcd.com . License CC BY-NC.

ELECTR OM A GNETIC SPECTRUM

Energy (eV)

μ eV meV eV keV MeV Te V

10 -6 10 -3 1 10 3 10 6 10 9

3

Public domain image (source: NASA)

DIPOLE RADI A TION

Rate from Fermi’ s Golden Rule + Density of states:

2

W = ~

| h f | V ˆ

| i i | 2

( E f ) =

ω 3 2

2 c 3 ~ | h r ˆ i |

sin 2

d

Integrating over angles:

λ ( E 1) =

4 e 2 ω 3

3 ~ c 3

| h r i | 2

4

DIPOLE APPR O XIM A TION

In deriving the dipole emission formula we only kept lowest order expansion:

k

A ~ a a e i ~ k · ~ r ~✏

k a (1 + i ~ k · ~ r + . . . ) ~✏

k a ~✏ k

k

k

This yields the typical dipole emission pattern:

W a sin 2 d

In QM the angular distribution is related to the photon angular momentum

5

BE Y OND THE DIPOLE

Higher order terms in the expansion give rise to gamma emission

with dif ferent angular-dependence pattern

and higher angular momentum for the gamma photon emitted

~ i ~ k · ~ r

X ( i ~ k · ~ r ) `

A a a k e

~✏ k a k ` !

`

~✏ k

Each l term contributes to a dif ferent decay rate.

6

MU L TIPOLE RADI A TION

Electric multipole

8 ( ` + 1 ) e 2

E 2 ` +1 3 2

D ˆ E 2 `

A ( E ` ) =

` [(2 ` + 1) ! ! ] 2 ~ c ~ c ` + 3

D | ~ r ˆ | E R 0 A 1 / 3

c | ~ r |

Rates: A ( E 1) = 1 . 0 10 14 A 2 / 3 E 3 A ( E 2) = 7 . 3 10 7 A 4 / 3 E 5 A ( E 3) = 34 A 2 E 7

A ( E 4) = 1 . 1 10 - 5 A 8 / 3 E 9

7

MU L TIPOLE RADI A TION

Magnetic multipole

> ( M ` ) =

` [(2 ` + 1)! ! ] 2 ~ c ~ c ` + 3

8 ( ` + 1 ) e 2

E 2 ` +1 3 2

c

| ~ r |

µ p

D ˆ E 2 ` - 2 ~ 1

m p

c

` + 1

Rates: λ ( M 1) = 5 . 6 10 13 E 3 λ ( M 2) = 3 . 5 10 7 A 2 / 3 E 5 λ ( M 3) = 1 6 A 4 / 3 E 7

λ ( M 4) = 4 . 5 10 - 6 A 2 E 9

8

WHICH TRANSITION?

The lowest multipole dominates:

Lower multipoles decay faster (higher rates)

Electric multipoles are faster than magnetic multipoles

Why don’t we always only observe electric dipole (E1) radiation?

9

SELECTION RULES

The multipole l is related to the gamma angular momentum

the angular momentum must be conserved in gamma decay

Possible l : | I f I i | ` g I f + I i

Parity: (-1) l for Electric and (-1) l-1 for Magnetic: parity must be conserved, Π γ = Π i Π f

10

WHICH TRANSITION?

The lowest permitted multipole dominates

Electric multipoles are more probable than the same magnetic multipole by a factor 100 ) ( E l )

) ( M l )

10 2

Emission from the multipole l +1 is 10 -5 times less probable than the l -multipole emission

) ( E, l + 1)

10 - 5 ,

) ( M, l + 1)

10 - 5

) ( E l ) ) ( M l )

11

WHICH TRANSITION?

Combining the two rules:

λ ( E, l + 1)

10 3 ,

λ ( M, l + 1)

10 7

λ ( M l ) λ ( E l )

Thus E2 competes with M1

But M2 does not compete with E1

12

INTERNAL CONVERSION

In some cases energy is not released in the form of gamma photons, but carried away by an electron:

A X ! A X +

+ e -

Z Z

This process is called Internal Conversion

It is the only process possible, when selection rules do not allow any of the multipole transitions:

e.g. even-even nuclides, decay from a 0 + level

the photon cannot have zero angular momentum.

13

MIT OpenCourseWare http://ocw.mit.edu

22.02 Introduction to Applied Nuclear Physics

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .