THE SHELL MODEL

22.02

Intr oduction T o Applied Nuclear Physics Spring 2012

Atomic Shell Model

Chemical pr operties show a periodicity

Periodic table of the elements

Add electr ons into shell structur e

2

0.30

0.25

Ê Ê Ê Ê Ê

Ê Ê

0.20

Ê Ê

Ê Ê

Ê Ê Ê

Ê

0.15

Ê Ê

Ê Ê

0.10

Ê

Ê

Ê Ê

Ê

Ê Ê

Ê

0.05

Ê

Ê

0

20

40

60

80

Z

Radius @ nm D

Atomic Radius

3

Ê

Ionization Energy (similar to B per nucleon)

Ê

2000

Ê

1500

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

1000

Ê Ê

Ê

Ê

Ê

Ê

Ê

Ê Ê

Ê

Ê Ê

Ê Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê Ê

Ê

Ê Ê

Ê

Ê Ê Ê

Ê Ê Ê

Ê

Ê

Ê Ê

Ê

Ê Ê Ê

Ê

Ê Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê Ê Ê Ê Ê

Ê

Ê

Ê Ê Ê Ê Ê Ê Ê Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê 20

Ê

40

Ê Ê Ê Ê Ê Ê Ê

60

Ê

Ê

Ê

Ê Ê

80

100

Ê Ê

Z

kJ per Mole

Ionization Ene r gy

4

AT O M I C S T R U C T U R E

The atomic wavefunction is written as

l

| i = | n, l , m i = R n,l ( r ) Y m ( e , ϕ )

where the labels indicate :

n : principal quantum number

l : orbital (or azimuthal) quantum number m: magnetic quantum number

The degeneracy is

D ( l ) = 2( 2 l + 1) ! D ( n ) = 2 n 2

5

AU F B AU P R I N C I P L E

The orbitals (or shells) are then given by the n-levels (?)

l

0

1

2

3

4

5

6

S p ect r oscop i c

n ot at i on

s

p

d

f

g

h

i

D ( l )

2

6

10

14

18

22

26

h i st or i c st r u ct u r e

he a vy n uclei

n

D (n)

e in shell

1

2

2

2

6

8

3

18

28

6

AT O M I C P E R I O D I C TA B L E

7

AU F B AU P R I N C I P L E

The orbitals (or shells) are then given by close-by energy-levels

l

0

1

2

3

4

5

6

S p ect r oscop i c

n ot at i on

s

p

d

f

g

h

i

D ( l )

2

6

10

14

18

22

26

h i st or i c st r u ct u r e

he a vy n uclei

n

D (n)

e in shell

1

2

2

2

6

8

3

18

28

3s+3p form one level with # 10 4s is filled befor e 3d

8

Nuclear Shell Model

Pictur e of adding particles to an exter nal potential is no longer good: each nucleon contributes to the potential

Still many evidences of a shell structur e

9

4

3

2

1

0

-1

-2

-3

-4

-5

208 Pb

64 Ni

114 Ca

184 W

38 Ar

102 Mo

86 Kr

14 C

132 T e

28

50

82

126

20

8

5

0

50

100

150

Nucleon number

-5

28

50

82

126

20

8

5

4

3

2

Pb

1

0

-1

D y

Pt

Ce

Hf

Kr

U

-2

-3

-4

-5

Cd

Ca

Ni

O

0

25

50

75

100

125

150

Nucleon number

S 2p (MeV)

S 2n (MeV)

Separation Ene r gy

PROTON NEUTRON

Image by MIT OpenCourseWare. After Krane.

10

B/A: JUMPS

B/A

(binding energy per nucleon)

9

8

7

6

5

4

3

A (Mass number)

0 50 100 150 200 250

“Jumps” in Binding energy from experimental data

11

CHA R T of NUCLIDES (Z/A vs. A )

Z/A

0.55

0.50

0.45

0.40

0.35

A

50 100 150 200 250

12

CHA R T OF NUCL ID ES

http://ww w .nndc.bnl.gov/chart/

“Periodic” , more complex properties nuclear structure

© Brookhaven National Laboratory. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .

13

NUCLEAR P O TENTIAL

V p =

3 ( Z 1) e 2

V n = r 2

V 0

R

2

0

( V 0 )

r

2

V

0

( Z 1) e

2

R 2

0

2 R 3

0

0

V 0 2 R

Harmonic potential

Steeper for neutr ons

14

NUCLEAR P O TENTIAL

V p =

3 ( Z 1) e 2

V n = r 2

V 0

( V 0 )

R

2

0

V 0

2 R 0

Steeper and Deeper for neutr ons

r

2

V

0

( Z 1) e

2

R 2

0

2 R 3

0

Harmonic potential

+

well depth

15

Shell Mode

Harmonic oscillator: solve (part of) the radial equation

including the angular momentum (centrifugal force term) we obtain the usual principal quantum number n = (N-l)/2+1

16

Spin-Orbit Coupling

Th e spin-orbit interaction is given by V SO =

1 ˆ

~

~ 2 V so ( r ) l ·

~ s ˆ

W e can calculate the dot pr oduct

D ~ ˆ

ˆ E 1

~ ˆ 2

~ ˆ 2

ˆ 2 ~ 2 3

l · ~ s

= ( j 2

l ~ s

) = 2 [ j ( j + 1)

l ( l + 1) ]

4

1

B ecause of the addition rules, j = l ± 2

D ~

l

l

~ 2

ˆ · ~ s ˆ E = ( 2

f or j = l + 1

2

~ 2 1

( l + 1) 2 f or j = l - 2

17

Spin-Orbit Coupling

when the spin is aligned with the angular momentum j = l + 1

the potential becomes mor e negative, 2

i.e. the well is deeper and the state mor e tightly bound.

when spin and angular momentum ar e anti-aligned j = l 1

the system's ener gy is highe r . 2

The dif fer ence in ener gy is Thus it incr eases with l .

E =

V so

2

(2 l + 1)

18

Example

3N level, with l=3 (1f level) j=7/2 or j=5/2

Level is pushed so down that it forms its own shell

2p 2p 1/2

3N 1f 5/2

1f 2p 3/2

2N 1f 7/2

19

20

6

5

1

3

5

3p 2f

1h

2f 5/2

2f 7/2

3p 1/2

3p 3/2

1h 9/2

1h 11/2

4

3

0

2

4

6

4s

3d 2g 1i

1i

11/2

1i 13/2

1

2p

1f 7/2

2p 1/2

2p 3/2

3

1g 9/2

1f 5/2

1f

0

2

4

3s 2d

1g

3s

1/2

1g 7/2

2d 3/2

2d 5/2

. . .

58

184

44

126

32

82

22

50

8

28

12

20

6

8

2

2

2 0 2s

1

1

1p

2 1d

0 0 1s

2s 1/2

1p 1/2

1p 3/2

1s 1/2

21

1d 3/2

1d 5/2

MIT OpenCourseWare http://ocw.mit.edu

22.02 Introduction to Applied Nuclear Physics

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .