THE SHELL MODEL
22.02
Intr oduction T o Applied Nuclear Physics Spring 2012
Atomic Shell Model
• Chemical pr operties show a periodicity
• Periodic table of the elements
• Add electr ons into shell structur e
2
0.30
●
●
0.25
●
●
●
●
Ê Ê Ê Ê Ê
●
●
Ê Ê ‡
0.20
●
●
●
●
Ê Ê
●
●
●
●
●
●
●
●
Ê Ê
●
●
●
●
●
●
●
Ê Ê Ê
Ê ‡
●
●
●
0.15
●
Ê Ê
Ê Ê ‡
●
0.10
●
●
●
●
●
●
Ê ‡
●
●
●
●
●
Ê ‡
Ê ‡ Ê
●
●
●
●
Ê ‡
Ê Ê
●
●
●
Ê ‡
0.05
●
●
●
●
●
Ê ‡
Ê ‡
0
20
40
60
80
Z
Radius @ nm D
Atomic Radius
3
‡ Ê
Ionization Energy (similar to B per nucleon)
‡ Ê
2000
‡ Ê
1500
‡ Ê
‡ Ê
‡ Ê
‡ Ê
‡ Ê
‡ Ê
‡ Ê
‡ Ê
‡ Ê
1000
‡ Ê ‡ Ê
‡ Ê
‡ Ê
‡ Ê
‡ Ê
‡ Ê
‡ Ê ‡ Ê
‡ Ê
‡ Ê ‡ Ê
‡ Ê ‡ Ê
‡ Ê
‡ Ê
‡ Ê
‡ Ê
‡ Ê
‡ Ê
‡ Ê
‡ Ê
‡ Ê ‡ Ê
‡ Ê
‡ Ê ‡ Ê
‡ Ê
‡ Ê ‡ Ê ‡ Ê
‡ Ê ‡ Ê ‡ Ê
‡ Ê
‡ Ê
‡ Ê ‡ Ê
‡ Ê
‡ Ê ‡ Ê ‡ Ê
‡ Ê
‡ Ê ‡ Ê
‡ Ê
‡ Ê
‡ Ê
‡ Ê
‡ Ê
‡ Ê
‡ Ê ‡ Ê ‡ Ê ‡ Ê ‡ Ê
‡ Ê
‡ Ê
‡ Ê ‡ Ê ‡ Ê ‡ Ê ‡ Ê ‡ Ê ‡ Ê ‡ Ê
‡ Ê
‡ Ê
‡ Ê
‡ Ê
‡ Ê
‡ Ê
‡ Ê 20
‡ Ê
40
‡ Ê ‡ Ê ‡ Ê ‡ Ê ‡ Ê ‡ Ê ‡ Ê
60
‡ Ê
‡ Ê
‡ Ê
‡ Ê ‡ Ê
80
100
‡ Ê ‡ Ê
Z
kJ per Mole
Ionization Ene r gy
4
AT O M I C S T R U C T U R E
The atomic wavefunction is written as
l
| i = | n, l , m i = R n,l ( r ) Y m ( e , ϕ )
where the labels indicate :
n : principal quantum number
l : orbital (or azimuthal) quantum number m: magnetic quantum number
The degeneracy is
D ( l ) = 2( 2 l + 1) ! D ( n ) = 2 n 2
5
AU F B AU P R I N C I P L E
The orbitals (or shells) are then given by the n-levels (?)
l |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
S p ect r oscop i c n ot at i on |
s |
p |
d |
f |
g |
h |
i |
D ( l ) |
2 |
6 |
10 |
14 |
18 |
22 |
26 |
h i st or i c st r u ct u r e |
he a vy n uclei |
n |
D (n) |
e — in shell |
1 |
2 |
2 |
2 |
6 |
8 |
3 |
18 |
28 |
6
AT O M I C P E R I O D I C TA B L E
7
AU F B AU P R I N C I P L E
The orbitals (or shells) are then given by close-by energy-levels
l |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
S p ect r oscop i c n ot at i on |
s |
p |
d |
f |
g |
h |
i |
D ( l ) |
2 |
6 |
10 |
14 |
18 |
22 |
26 |
h i st or i c st r u ct u r e |
he a vy n uclei |
n |
D (n) |
e — in shell |
1 |
2 |
2 |
2 |
6 |
8 |
3 |
18 |
28 |
3s+3p form one level with # 10 4s is filled befor e 3d
8
Nuclear Shell Model
• Pictur e of adding particles to an exter nal potential is no longer good: each nucleon contributes to the potential
• Still many evidences of a shell structur e
9
4
3
2
1
0
-1
-2
-3
-4
-5
208 Pb
64 Ni
114 Ca
184 W
38 Ar
102 Mo
86 Kr
14 C
132 T e
28
50
82
126
20
8
5
0
50
100
150
Nucleon number
-5
28
50
82
126
20
8
5
4
3
2
Pb
1
0
-1
D y
Pt
Ce
Hf
Kr
U
-2
-3
-4
-5
Cd
Ca
Ni
O
0
25
50
75
100
125
150
Nucleon number
S 2p (MeV)
S 2n (MeV)
Separation Ene r gy
PROTON NEUTRON
Image by MIT OpenCourseWare. After Krane.
10
B/A: JUMPS
B/A
(binding energy per nucleon)
9
8
7
6
5
4
3
A (Mass number)
0 50 100 150 200 250
“Jumps” in Binding energy from experimental data
11
CHA R T of NUCLIDES (Z/A vs. A )
Z/A
0.55
0.50
0.45
0.40
0.35
A
50 100 150 200 250
12
CHA R T OF NUCL ID ES
http://ww w .nndc.bnl.gov/chart/
“Periodic” , more complex properties → nuclear structure
© Brookhaven National Laboratory. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .
13
NUCLEAR P O TENTIAL
V p =
✓ 3 ( Z — 1) e 2 ◆
V n = r 2 ✓
V 0 —
R
2
◆
0
( V 0 )
r
2
✓
V
0
( Z — 1) e
2
R 2 —
0
2 R 3
0
◆
0
— V 0 — 2 R
Harmonic potential
Steeper for neutr ons
14
NUCLEAR P O TENTIAL
V p =
3 ( Z — 1) e 2 ◆
V n = r 2 ✓
V 0 —
( V 0 )
R
2
◆
0
— V 0 —
2 R 0
Steeper and Deeper for neutr ons
r
2
✓
V
0
( Z — 1) e
2
R 2 —
0
2 R 3
0
◆
Harmonic potential
+
well depth
15
Shell Mode
Harmonic oscillator: solve (part of) the radial equation
including the angular momentum (centrifugal force term) we obtain the usual principal quantum number n = (N-l)/2+1
16
Spin-Orbit Coupling
• Th e spin-orbit interaction is given by V SO =
1 ˆ
~
~ 2 V so ( r ) l ·
~ s ˆ
• W e can calculate the dot pr oduct
D ~ ˆ
ˆ E 1
~ ˆ 2
~ ˆ 2
ˆ 2 ~ 2 3
l · ~ s
= ( j 2
— l — ~ s
) = 2 [ j ( j + 1)
— l ( l + 1) — ]
4
1
• B ecause of the addition rules, j = l ± 2
D ~
l
l
~ 2
ˆ · ~ s ˆ E = ( 2
f or j = l + 1
2
~ 2 1
— ( l + 1) 2 f or j = l - 2
17
Spin-Orbit Coupling
• when the spin is aligned with the angular momentum j = l + 1
the potential becomes mor e negative, 2
i.e. the well is deeper and the state mor e tightly bound.
• when spin and angular momentum ar e anti-aligned j = l — 1
the system's ener gy is highe r . 2
• The dif fer ence in ener gy is Thus it incr eases with l .
∆ E =
V so
2
(2 l + 1)
18
Example
• 3N level, with l=3 (1f level) j=7/2 or j=5/2
• Level is pushed so down that it forms its own shell
2p 2p 1/2
3N 1f 5/2
1f 2p 3/2
2N 1f 7/2
19
20
6
5
1
3
5
3p 2f
1h
2f 5/2
2f 7/2
3p 1/2
3p 3/2
1h 9/2
1h 11/2
4
3
0
2
4
6
4s
3d 2g 1i
1i
11/2
1i 13/2
1
2p
1f 7/2
2p 1/2
2p 3/2
3
1g 9/2
1f 5/2
1f
0
2
4
3s 2d
1g
3s
1/2
1g 7/2
2d 3/2
2d 5/2
. . .
58 |
184 |
44 |
126 |
32 |
82 |
22 |
50 |
8 |
28 |
12 |
20 |
6 |
8 |
2 |
2 |
2 0 2s
1
1
1p
2 1d
0 0 1s
2s 1/2
1p 1/2
1p 3/2
1s 1/2
21
1d 3/2
1d 5/2
MIT OpenCourseWare http://ocw.mit.edu
22.02 Introduction to Applied Nuclear Physics
Spring 2012
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .