Bound Pr oblems in the r eal world

Fr om the Schrödinger Equation in 3D to the angular momentum

Schrödinger Equation in 3D

W e write the time-independent Schrödinger equation

- 2 m r + V ( x, y , z ) ( x ) = E ( x )

~ 2 2

in spherical coor dinates

~ 2

2 m

1 @

r 2 @ r

r 2 @

@ r

+ 1 @

r 2 si n @✓

si n @

@✓

+ 1 @ 2

r 2 si n 2 2

( r, , )

z

θ

r

φ

x

y

= [ E V ( r )] ( r, , )

Schr odinger Equation in 3D

Assumption: V ( r, e , ϕ ) = V ( r )

By using separation of variables, we find

1) an angular equation

1 @ si n

@ Y +

1 @ 2 Y =

( + 1) ( )

si n @✓

@✓ si n 2 @ ¢ 2

- l l

Y , ¢

2) a radial equation

R dr

r

dr

-

~ 2

V - E

1 d 2 dR 2 m r 2 (

l

l

) = (

+ 1)

1) Angular Equation: Angular Momentum Operator

Consider the classical angular momentum and the r elated quantum operator

L ~ ˆ

= ~ r ˆ

p ~ ˆ =

- i ~ ~ r ˆ

r ~ ˆ

In spherical coor dinates we have:

x

∂e ∂ϕ

L = i ~ sin ϕ + cot e cos ϕ ,

L ˆ = - i ~ cos ϕ - cot e sin ϕ

y

L ˆ z

= - i ~

∂ϕ

∂e ∂ϕ

~

ˆ

And the magnitude of the angular momentum

| L | 2

= L ˆ 2

+ L ˆ 2

+ L ˆ 2 is

x

y

z

ˆ 2 2

1

1 2

L = _ ~

sin e ∂e

sin e

∂e

+ sin 2 e ϕ 2

1) Angular Equation

W e identify the angular equation as the eigenvalue equation for the orbital angular momentum:

2 1 @ @ Y 1 @ 2 Y 2

_ ~ si n @✓

si n

@✓

+ sin 2 @ ¢ 2

= ~ l ( l + 1) Y ( , ¢ )

! L 2 Y = ~ 2 l ( l + 1) Y ( , )

d

d

m

W e solve the dif fer ential equation by separation of variables, Y ( , ¢ ) = ( ) < ( ¢ )

d 2

m

d 2 Φ =

2 Φ (

) si n

d si n

d = 2

- l

l

( + 1) sin 2

( )

1) Angular Equation

The normalized angular eigenfunctions ar e then Spherical Harmonic functions

l

Y m ( , ) =

s (2 l + 1) ( l m )! P m (cos ) e im

l

4 ( l + m )!

l

wher e P m (cos ) ar e Legendr e Polynomials. For example:

0 0 0

P 0 (cos ) = 1 P 1 (cos ) = cos P ± 1 (cos ) = s i n

Spherical Harmonics

MIT OpenCourseWare http://ocw.mit.edu

22.02 Introduction to Applied Nuclear Physics

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .