N eutron Interferometry
1
N IST Center for N eutron Research
Home to a 20 MW reactor that provides neutrons for scientific research
Dozens of instruments (most for Solid State applications) Some instruments for the study of Fundamental Physics
2
Public domain image
The Neutron Interferometer and Optics Facility
Public domain image
Isolated 40,000 Kg room is supported by six airsprings Active V ibration Control eliminates vibrations less than 10Hz T emperature Controlled to +/- 5 mK 3
Inside the N CN R
Reactor Core
Fuel Elements LH 2
Guide Hall
7 Neutron Guides
NIOF
Public domain images
4
W a v epac k et
Neutr on coming out of the r eactor is a wa v epack et: Sum of man y plane wa v es with diff er ent wa v en umber k [not a stationar y state: e v olv es (mo v es!) in time]
p
2 p
3 p
4 p
5 p
6 p
7 p
8 p
9 p
10 p
x
F ourier T ransf orm Pair
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 k
5
Monoch r omator
Monochr omator selects a small range of momenta
Source: Pushin, Dmitry A. "Coherent Control of Neutron Interferometry." Ph.D. Thesis, MIT, 2006.
6
W a v epac k et
p
2 p
3 p
4 p
5 p
6 p
7 p
8 p
9 p
10 p
x
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 k
7
Neut r on Interf e r ometer
3- blade interf er ometer fr om single Si cr ystal
Public domain image (source: NIST).
8
5- blade interf er ometer fr om single Si cr ystal
Photo courtesy of Dmitry Pushin. Used with permission.
9
W a v epac k et ➙ Plane w a v e
p
2 p
3 p
4 p
5 p
6 p
7 p
8 p
9 p
10 p
x
Photo courtesy of Dmitry Pushin. Used with permission.
W a v epack et ∆ x ≫ Interf er ometer ➞ consider ∆ x = ∞
| i
or neutr on = plane wa v e k = ϕ k ( x ) =
10
1
p 2 π
e ik x
Momentum eigenfunctions
| - k i
| k i
| k i
courtesy of Dmitry Pushin. Used with permission.
W e c a n a n a l y z e t h e n e u t r o n i n t e r f e r o m e t e r looking onl y at the momentum eigenfunctions: S T A TIONA R Y SOLUTION (no time e v olution)
11
Interf e r ence
(Calculations: 1 )
| ( 0) i = | k i
12
The neutr on is a plain wa v e with k>0. The first blade is a beam splitter (50/50% pr obability of g oing up or do wn)
Interf e r ence
(Calculations: 2 )
p 2 ( | k i + | - k i )
1
t 1
| 1 i =
After the first blade , the state is a superposition.
13
Interf e r ence
(Calculations: 3 )
| 2 i =
1
p 2 ( | - k i + | k i )
t 2
The second blade is a mir r o r , exchanging neutr ons
with positiv e and negativ e 14 k
Interf e r ence
(Calculations: 4 )
| 3 i =
1 i '
p 2 ( e
| - k i + | k i )
t 3
N e u t r o n s i n t h e u p p e r p a t h ( w i t h n e g a t i v e
momentum) g o thr ough t h 1 e 5 phase flag (an object)
Interf e r ence
(Calculations: 5 )
ϕ | i = cos ϕ | k i + s i n ϕ | - k i
them to interf er e .
The thir d blade r ecombines the beams and allo ws
16
Interf e r ence
ϕ
The detector measur e the neutr on
Detector
P (+ k ) = cos 2 ( ϕ )
intensity
flux
(n umber of neutr ons
per u n 17 it time).
Interf e r ence
Courtesy of Dmitry Pushin. Used with permission.
18
Flux of par ticles
• Plane wa v e wa v efunction not pr operl y normalized
( x ) = Ae ik x is
• It is difficult to interpr et as
| ( x ) | 2
as the
pr obability of finding a par ticle at position x.
• Interpr et
v | ( x ) | 2 = I
as a flux of par ticles
set
A = mI
r
~ k 19
Scattering
of W a v es and Par ticles
20
T ransmission
H
Region I
21
Region II
Energ y > P otential Step E=T+V ➜ mv 0 2 /2 > mgH
T ransmission
H
Region I
22
Region II
Energ y > P otential Step E=T+V ➜ mv 0 2 /2 > mgH
Reflection
H
Region I
23
Region II
Energ y < P otential Step E=T+V ➜ mv 0 2 /2 < mgH
Reflection
H
Region I
24
Region II
Energ y < P otential Step E=T+V ➜ mv 0 2 /2 < mgH
Reflection/ T ransmission
Reflected wa v e
e — ik x
T ransmitted wa v e
e ik x
Incoming wa v e
e ik x
25
Reflection/ T ransmission
Reflected wa v e
e — ik x
T ransmitted wa v e
e ik x
Incoming wa v e
e ik x
26
MIT OpenCourseWare http://ocw.mit.edu
22.02 Introduction to Applied Nuclear Physics
Spring 2012
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .
MIT OpenCourseWare http://ocw.mit.edu
22.02 Introduction to Applied Nuclear Physics
Spring 2012
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .