PRA Methodology Overview
22.39 Elements of Reactor Design, Operations, and
Safety
Lecture 9
Fall 2006
George E. Apostolakis Massachusetts Institute of Technology
PRA Synopsis
Figure removed due to copyr i ght restrictions.
Futron Corp . , International Spa ce Station PRA, Dec . 2000
NPP End States
• Various states of degradation of the reactor core.
• Release of radioactivity from the containment.
• Individual risk.
• Numbers of early and latent deaths.
• Number of injuries.
• Land contamination.
The Master Logic Diagram (MLD)
• Developed to identify Initiating Events in a PRA.
• Hierarchical depiction of ways in which system perturbations can occur.
• Good check for completeness.
MLD Development
• Begin with a top event that is an end state.
• The top levels are typically functional.
• Develop into lower levels of subsystem and component failures.
• Stop when every level below the stopping level has the same consequence as the level above it.
Nuclear Power Plant MLD
Ex c e ssiv e Offsite Rel eas e
Ex c e ssiv e Re le a s e of Core Materia l
Ex c e ssiv e Re le a s e of
Non- Core Materia l
Ex c e ssiv e Core D amage
RC S pres sure Bo un dary Fa ilure
Co ndi ti o n al Conta i nment Fa ilure
Insuffi c i ent Reac tiv i t y Contro l
Insuffi c i ent Core-he at Remov a l
Insuffi c i ent RC S Inv entory Contro l
Insuffi c i ent RC S Heat Remov a l
Insuffi c i ent RC S Pressure Contro l
Insuffi c i ent Iso l at io n
Insuffi c i ent Pressure & Temperature Contro l
Insuffi c i ent Co m b us t i bl e Gas Co ntrol
NPP: Initiating Events
• Transients
– Loss of offsite power
– Turbine trip
– Others
• Loss-of-coolant accidents (LOCAs)
– Small LOCA
– Medium LOCA
– Large LOCA
ILLUSTRATION EVENT TREE: Station Blackout Sequences
S eal
LO S P DG s LO C A EF W E P R e c . C o n t .
EN D ST AT E
0.0 7 pe r yr |
0.99 3 |
su cc e ss |
|||
0.00 7 |
0 |
su cc e ss |
|||
su cc e ss |
|||||
co r e m e l t |
|||||
c o re m e l t w / re l e a s e |
|||||
1 |
0 . 9 5 |
0 . 9 9 |
su cc e ss |
||
0. 01 |
co r e m e l t 4. 70E - 06 |
||||
c o re m e l t w / re l e a s e |
|||||
0 . 05 |
0. 94 |
su cc e ss |
|||
0. 06 |
co r e m e l t 1. 50E - 06 |
||||
c o re m e l t w / re l e a s e |
From : K. Kiper, MIT Lecture, 2006 Courtesy of K. Kiper. Used with permission.
LOSP Distribution
Epistemi c Uncertainties
5th 0 .005/yr (200 yr)
Median 0.040/yr (25 yr)
Mean 0.070/yr (14 yr)
95th 0 .200/yr ( 5 yr)
From : K. Kiper, MIT Lecture, 2006 Courtesy of K. Kiper. Used with permission.
Offsite Power Recovery Curves
C u m u l at i ve N o n - R eco ver y o f P o w er F r eq u en cy
1
0. 9
90t h P er c ent i l e 50t h P er c ent i l e 10t h P er c ent i l e
0. 8
0. 7
0. 6
0. 5
0. 4
0. 3
0. 2
0. 1
0
0 2 4 6 8 10 12 14 16 18 20 22 24
Ti m e A f t e r P ow e r Fa i l ur e ( H r )
From : K. Kiper, MIT Lecture, 2006 Courtesy of K. Kiper. Used with permission.
STATION BLACKOUT EVENT TREE
Co urtesy o f U.S. NRC.
NPP: Loss-of-offsite-power event tree
LOOP Secondary Bleed Recirc. Core Heat Removal & Feed
OK
OK
PDSi PDSj
Human Performance
• The operators must decide to perform feed & bleed.
• Water is “fed” i nto the reactor vessel by the high- pressure system and is “bled” out through relief valves into the containment. Very costly to clean up.
• Must be initiated within about 30 minutes of losing secondary cooling (a thermal-hydraulic calculation).
J. Rasmussen’s Categories of Behavior
• Skill-based behavior: Performance during acts that, after a statement of intention, take place withou t conscious control as smooth, automated, and highl y integrated patterns of behavior.
• Rule-based behavior: Performance is consciously controlled by a stored rule or procedure.
• Knowledge-based behavior: Performance during unfamiliar situations for which no rules for control are available.
Reason’s Categories
Unsafe acts
– U nintended action
• S lip
• L a p s e
• M i s t a k e
– I ntended violation
Latent conditions
• Weaknesses that exist within a system that create contexts for human error beyond the scope of individual psychology.
• They have been found to be sign ificant contributors to incidents.
• Incidents are usually a combination of hardware failures and human errors (latent and active).
Reason’s model
Fallible
Decis i ons
Line Management
Deficiencies
Psychological
Precursors
Unsafe
Acts
J. Reason, Human Error , Cambridge University Press, 1990
Pre-IE (“routine”) actions
Median EF
Errors of commission 3x10 -3 3
Errors of omission 10 -3 5
A.D. S w ain and H.E. Guttmann, Handbook of Human Reliability Analysis with Emphasis on N u clear Power Plant A pplications, Report NUREG/CR-1278, US Nuclear Regula tory Commiss ion, 1983.
Post-IE errors
• Models still being developed.
• T ypically, they include detailed ta sk analyses, ident i fication of performance shaping factors (PSFs), and the subjective assessment of probabilities.
• PSFs: System design, facility cult ure, organizational factors, stress level, others.
The ATHEANA Framework
Plant Desig n ,
Error- Forcing Context
Perf ormance
Human Error
PRA
Logic Models
Risk
Operation s and Maintenanc e
Sha pi n g Factors
Error Mechanisms
Unsafe Actions
Human Fai l ure Events
Management Decisions
Scenario Definition
Plant C onditions
NUREG/CR-6350, May 1996.
Risk Models
DD
CC
BB
AA
IE 2
#
END - STATE- NAM ES
1 O K
2 T => 4 TR AN1
3 L O V
4 T => 5 TR AN2
5 L O C
6 L O V
AA
A1 A2
BB
B- G AT E1 B- G AT E2
B- G A TE3
EVEN T - B1 EVEN T - B2 EVENT- B3
B- G A TE4
EVEN T - B4 EVEN T - B5
B- G A TE5
B- G A TE6
B- G AT E7
EVEN T - B6 EVENT- B7 EVEN T - B8 EVEN T - B9 EVENT- B1 0 EVEN T - B1 1
FEED & BLEED COOLING DURING LOOP 1-OF-3 SI TRAINS AND 2-OF-2 PORVS FOR SUCCESS
Co urtesy o f U.S. NRC.
HIGH PRESSURE INJECTION DURING LOOP 1-0F-3 TRAINS FOR SUCCESS
Co urtesy o f U.S. NRC.
Cut sets and minimal cut sets
• CUT SET : Any set of events (failures of components and human actions) that cause system failure.
• MINIMAL CUT SET : A cut set that does not contain another cut set as a subset.
S
E
E
Indicator Variables
1 , I f E j i s T
X j =
0 , I f E j i s F
Important Note: X k = X, k: 1 , 2, …
Venn Diagram
X T = φ ( X 1 , X 2 ,…X n ) φ ( X )
φ ( X ) is the structur e o r switchin g function .
It maps an n-dimensional vector of 0s and 1s onto 0 or 1.
Disjunctiv e Norma l Form :
X T 1
N
( 1
1
M i )
N
M i
1
Sum-of-Product s Form :
N N 1 N
N 1 N
X T
M i M i M j
... ( 1 )
M i
i 1
i 1
j i 1
i 1
Dependent Failures: An Example
B 1 a nd B 2 ar e i d e n t i cal
C o m pone n t B 1
r e dunda nt c om pone nt s
C om pone nt B 2
MCS: M 1 = {X A } M2 = {X B1 , X B2 }
System Logic |
X S = 1 – ( 1 – X A )(1 – X B1 X B2 ) = = X A + X B1 X B2 - X A X B1 X B2 |
Failure Probability |
P(fail) = P(X A ) + P(X B1 X B2 ) – P(X A X B1 X B2 ) |
Example (cont’d)
• In general, we cannot assume independent failures of B 1 and B 2 . This means that
P(X B1 X B2 ) P(X B1 ) P(X B2 )
• How do we evaluate these dependencies?
Dependencies
• Some dependencies are modeled explicitly, e.g., fires, missiles, earthquakes.
• After the explicit modeling, there is a class of causes of failure that are treated as a group. They are called common-cause failures.
Special I ssue on Dependent Failur e Analysis, Reliability Engineering and System Safety, vol. 34, no. 3, 1991.
The Beta-Factor Model
• The
β -factor model assumes that common-
cause events always involve failure of all
components of a common cause component group
• It further assumes that
CCF
total
Generic Beta Factors
0. 2
GE N E RI C B E T A F A CT O R ( M E AN V AL UE )
0.18
0.16
0.14
0.12
0. 1
0.08
0.06
0.04
0.02
R E ACT O R T RI P BRAKE R S
DI SSEL G E NERAT O R S
MO T O R VA L V E S
PW R SAF ET Y /R E L IE F PUM P S
BW R SAF ET Y /R E L I EF VAL VES
R H R PUM P S
SI PUM PS
C O NT S PRAY P U MP S
AFW P U MP S
SW / CCW PUM PS
0
A ver age
Data Analysis
• The process of collecting and analyzing information in order to estimate the parameters of the epistemic PRA models.
• Typical quantities of interest are:
Initiating Event Frequencies
Component Failure Frequencies
Component Test and Maintenance Unavailability
Common-Ca use Failure Probabilities
Human Error Rates
General Formulation
X T = φ ( X 1 ,…X n ) φ ( X )
X T 1
N
( 1
1
M i )
N
M i 1
N N 1 N
N 1 N
X T M i
M i M j
... ( 1 )
M i
i 1
i 1 j i 1
i 1
X T : the TOP event indicator variable (e.g., core melt, system failure)
M i : the i th minimal cut set (for systems) or accident sequence (for core melt, containment failure, et al)
TOP-event Probability
P X
N P M
1 N 1 P N M
T i
i
1 1
N
P X T
P M i
1
Rare-event approximation
k
m
The question is how to calculate the probability of M i
P ( M i )
P ( X i
... X i )
RISK-SIGNIFICANT INITIATING EVENTS
Risk-Sig nif i cant Init iat i ng Event |
Period |
Number of Ev e nts |
Mean Frequency |
Tren d |
General Transien ts |
1998 – 2004 |
2120 |
7.57 E-1 |
|
B WR General Transie n ts |
1997 – 2004 |
699 |
8.56 E-1 |
|
PWR Ge neral Transie n ts |
1998 – 2004 |
1421 |
7.10 E-1 |
|
Loss o f Fee d w ater |
1993 – 2004 |
188 |
9.32 E-2 |
|
Loss of Heat Sin k |
1995 – 2004 |
259 |
1.24 E-1 |
|
B W R L o ss of Heat Si n k |
1996 – 2004 |
154 |
1.88 E-1 |
|
PWR L o ss of Heat Si n k |
1991 – 2004 |
105 |
9.23 E-2 |
|
Loss o f In strument Air (BWR) |
1994 – 2004 |
19 |
7.60 E-3 |
|
Loss o f In strument Air (PWR) |
1990 – 2004 |
17 |
1.19 E-2 |
|
Loss of Vital AC Bus |
1988 – 2004 |
43 |
2.98 E-2 |
|
Loss of Vital DC Bus |
1988 – 2004 |
3 |
2.35 E-3 |
|
Stuck Open SRV (BWR) |
1993 – 2004 |
14 |
2.07 E-2 |
|
Stuck Open SRV (PWR) |
1988 – 2004 |
2 |
2.30 E-3 |
|
Steam Generator Tube Rupture |
1988 – 2004 |
3 |
3.48 E-3 |
|
Very Small LOCA |
1988 – 2004 |
5 |
3.92 E-3 |
Department of Nuclea r S c ien ce and Engineering 35
P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.
5
PW R gene ral t r ans i e nt s , and 90% i n t erv al s
M a x i m u m l i k e l i h ood es t i m a t e (n / T ) (ba se l i ne p e ri od)
90% i nt er v al (pr edi c t i o n l i m i t s )
Fi t t ed l i n e
4
3
2
1
0
198 8 1 990 199 2 19 94
1 996
Y ear
19 98 2 000
Lo g m od el p - v al ue < = 0. 00005
200 2 2 004
PQ PL Nov . 1, 2 005
5
BW R gener al t r a ns i ent s, and 90 % i nt e rv al s
M a xi m u m l i k el i hoo d es t i m a t e (n/ T ) (bas el i ne per i od)
90% i nt er v a l ( pr edi ct i on l i m i t s )
F i t t ed l i ne
4
3
2
1
0
198 8 1 990 199 2 19 94
1 996
Y ear
19 98 2 000
Lo g m od el p - v al ue < = 0. 00005
200 2 2 004
BQ PL Nov . 1, 2 005
1. 2
1. 0
BW R l os s of heat s i nk , and 90% i nt erv a l s
M a xi m u m l i k el i hoo d es t i m a t e (n/ T ) (bas el i ne per i od)
90% i nt er v a l ( pr edi ct i on l i m i t s )
F i t t ed l i ne
0. 8
0. 6
0. 4
0. 2
0. 0
198 8 1 990 199 2 19 94
1 996
Y ear
19 98 2 000
Lo g m od el p - v al ue < = 0. 00005
200 2 2 004
BLPL N o v . 1, 2005
INITIATING EVENT TRENDS
Even ts / re acto r cri t i c al ye ar
Even ts / re acto r cri t i c al ye ar
PWR General Transients BWR General Transients
Even ts / re acto r cri t i c al ye ar
Even ts / re acto r cri t i c al ye ar
PWR Loss of Heat Sink BWR Loss of Heat Sink
0. 5
PW R l o s s of heat s i nk , a nd 90% i n t e r v al s
M a x i m u m l i k e l i h ood es t i m a t e (n / T ) (ba se l i ne p e ri od)
90% i nt er v al (pr edi c t i o n l i m i t s )
Fi t t ed l i n e
0. 4
0. 3
0. 2
0. 1
0. 0
198 8 1 990 199 2 19 94 1 996 19 98 2 000 200 2 2 004
Lo g m od el p - v al ue = 0. 02 0 Y ear PLPL N o v . 9, 2005
P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.
Department of Nuclea r S c ien ce and Engineering 36
INITIATING EVENTS INSIGHTS
• Most initiating events have decreased in frequency over past 10 years.
• Combined initiating event frequencies are 4 to 5 times lower than values used in NUREG-1150 and IPEs.
• General transients constitute majority of initiating events; more severe challenges to plant safety systems are about one-quarter of events.
P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.
Department of Nuclea r S c ien ce and Engineering 37
ANNUAL LOOP FREQUENCY TREND
0.25
O c cu r r en c e R at e ( p er r e act o r cr i t i c al year )
0.20
0.15
0.10
0.05
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
0.00
Y ear l y 86- 96 T r end 86- 96 U pper B ound 86- 96 Low er B ound 97- 02 T r end 97- 02 U pper B ound 97- 02 Low er B ound
Department of Nuclea r S c ien ce and Engineering 38
P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.
ANNUAL LOOP DURATION TREND
1000. 00
100. 00
D u r a ti o n (h r s . )
10. 00
1. 00
0. 10
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
0. 01
T r end 1986- 96 5% Low er B o und 95% U p per B o und O b s e r v ed w i th B ounds T r end 1997- 2003 5% Low e r B ound 95% U pper B o und
Department of Nuclea r S c ien ce and Engineering
P. Baranowsky, RIODM Lecture, MIT, 2006
Courtesy of P. Baranowsky. Used with permission.
39
LOOP FREQUENCY INSIGHTS
• Overall LOOP frequency during critical operation has decreased over the years (from 0.12/ry to 0.036/ry)
• Average LOOP duration has increased over the years:
– Statistically significant increasing trend f o r 1986–1996
– Essentially constant over 1997–2004
• 24 LOOP events between 1997 and 2004; 19 during the “summer” period
• No grid-related LOOP events between 1997 and 2002; 13 in 2003 and 2004
• Decrease in plant-centered and switchyard-centered LOOP events; grid events are starting to dominate
Department of Nuclea r S c ien ce and Engineering 40
P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.
SYSTEM RELIABILITY STUDY RESULTS
STUDY |
MEAN UNRELIABILITY |
UNPLANNED DEMAND TREND |
FAILURE RATE TREND |
UNRELIABILITY TREND |
AFW (1987–2004) |
5.19 E-4 |
|||
EDG (1997–2004) |
2.18 E-2 |
N/A |
N/A |
|
HPCI (1987–2004) |
6.25 E-2 |
|||
HPCS (1987–2004) |
9.48 E-2 |
|||
HPI (1987–2004) |
1.09 E-3 |
|||
IC (1987–2004) |
2.77 E-2 |
|||
RCIC (1987–2004) |
5.18 E-2 |
Department of Nuclea r S c ien ce and Engineering
P. Baranowsky, RIODM Lecture, MIT, 2006
Courtesy of P. Baranowsky. Used with permission.
41
0. 030
ED G un av ail a b i l i t y ( n o r e c o v . ) ( FTS m o de l) an d 90 % i n t e r v als
F i tt ed m o d e l
90 % c o nf id en c e ba nd
0. 025
0. 020
0. 015
0. 010
0. 005
0. 000
19 97 1 99 8 19 99 2 00 0 20 01 2 00 2
Lo g m o del p- v a lu e = 0 . 00 062
Fisca l Y e ar
20 03 2 00 4
U 0 nr L A u g. 31 , 2 0 0 5
0. 00 14
0. 00 12
A F W un av a i l ab i l i t y ( F T S m o de l ) an d 90 % i nt er v al s
Fi t t e d m o d e l
9 0 % co nfi d en c e b an d
0. 00 10
0. 00 08
0. 00 06
0. 00 04
0. 00 02
0. 00 00
19 8 8 19 9 0 19 92 19 94 19 96 19 98 20 00 20 02 20 04
Lo g m o del p- v a lu e = 0 . 44
Fisca l Y e ar
U 0 L A u g . 3 0 , 20 05
0. 0 07
0. 0 06
H P I 8 - ho ur un r e l i a b i l i ty ( C N ) an d 90 % i n ter v al s
Fi t t e d m o d e l
9 0 % co nfi d en c e b an d
0. 0 05
0. 0 04
0. 0 03
0. 0 02
0. 0 01
0. 0 00
19 88 19 90 19 92 19 94 19 96 19 98 20 00 20 02 20 04
Lo g m o del p- v a lu e = 0 . 02 9
Fisca l Y e ar
U 8 L Jan . 3 1 , 20 06
0. 00 40
0. 00 32
0. 00 24
0. 00 16
0. 00 08
0. 00 00
19 8 8 19 9 0 19 92 19 94 19 96 19 98 20 00 20 02 20 04
Lo g m o del p- v a lu e = 0 . 23
Fisca l Y e ar
U 8 L O c t. 1 1 , 20 0 5
PWR SYSTEM RELIABILITY STUDIES
E D G u n a v a ila bili ty ( n o r e c o v . ) ( F T S mo de l)
A F W un a v aila b ilit y ( F T S mo de l)
EDG Unavailability (FTS) AFW Unavailability (FTS)
HP I 8- ho ur u n r e l i ab ilit y ( C N)
AFW 8-ho ur u n rel i a b i l i ty
HPI Unreliability (8 hr mission) AFW Unreliability (8 hr mission)
A F W 8- h o u r un r e l i a b i l i t y an d 90 % in ter v a l s
Fi t t e d m o d e l
9 0 % co nfi d en c e b an d
P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.
Department of Nuclea r S c ien ce and Engineering 42
PWR SYSTEM INSIGHTS
• EDG
– EDG start reliability much improved over past 10 years.
– Failure-to-run rates lower than in most PRAs.
• AFW
– Industry average reliability consiste nt with or better than Station Blackout and ATWS rulemaking.
– Wide variation in plant specific AFW reliability primarily due to configuration.
– Failure of suction source identified as a contributor (not directly modeled in some PRAs).
• HPI
– Wide variation in plant specific HPI reliability due to configuration.
– Various pump failures are the do minant failure contributor.
P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.
Department of Nuclea r S c ien ce and Engineering 43
0. 40
0. 35
H P C I 8-ho ur u n rel i abi l i t y and 90% i n t e r v al s
F i t t ed m odel
90% c onf i denc e b and
0. 30
0. 25
0. 20
0. 15
0. 10
0. 05
0. 00
1 988 1 990 1 992 1 994 1 996 19 98 20 00 20 02 20 04
L og m o del p-v a l ue = 0. 0011
Fi scal Y e ar
U 8L O c t . 11, 2 005
0. 08
s
0. 06
0. 04
0. 02
0. 00
1 988 1 990 1 992 1 994 1 996 19 98 20 00 20 02 20 04
L og m o del p-v a l ue = 0. 11
Fi scal Y e ar
U 0L Sept . 1 , 2005
0. 32
0. 28
HPC S 8- hour unr el i ab i l i t y a nd 90% i nt er v al s
Fi t t ed m odel
90 % c on f i de nc e band
0. 24
0. 20
0. 16
0. 12
0. 08
0. 04
0. 00
198 8 19 90 19 92 1 994 1 996 1 998 2 000 200 2 200 4
p- v al ue = 0. 41
Fi scal Y e ar
U 8 O c t . 11, 2 005
0. 25
0. 20
0. 15
0. 10
0. 05
0. 00
198 8 19 90 19 92 1 994 1 996 1 998 2 000 200 2 200 4
Lo g m od el p - v al ue = 0. 14
Fi scal Y e ar
U 8 L O c t . 11, 2005
BWR SYSTEM RELIABILITY STUDIES
HP CI 8 - hou r u nrel i ab il ity
RCIC un avai la bil i ty (FTS mo del )
HPCI Unreliability (8 hr mission) RCI C Unavailability (FTS)
R C I C unav a i l abi l i t y ( F TS m o d e l ) and 90% i n t e r v al
F i t t ed m odel
90% c onf i denc e b and
RC IC 8-ho ur unre lia bil i ty
HPCS Unreliability (8 hr mission) RCI C Unreliability (8 hr mission)
RC I C 8-ho ur u nrel i abi l i t y and 90% i n t erv al s
Fi t t ed m odel
90 % c on f i de nc e band
HPCS 8-h our un rel i ab ili ty
P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.
Department of Nuclea r S c ien ce and Engineering 44
BWR SYSTEM INSIGHTS
• HPCI
– Industry-wide unreliability show s a statistically significant decreasing trend.
– Dominant Failure: failure of the injection valve to reopen during level cycling.
• HPCS
– Industry average unreliability indicates a constant trend.
– Dominant Failure: failure of the injection valve to open during initial i njection.
• RCIC
– Industry average unreliability indicates a constant trend.
– Dominant Failure: failure of the injection valve to reopen during level cycling.
P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.
COMMON-CAUSE FAILURE (CCF) EVENTS
• Criteri a for a CCF Event:
– Two or more components fail or are degraded at the same plant and in the same system.
– Component failures occur within a selected period of time such that success of the PRA mission would be uncertain.
– Component failures result from a single shared cause and are linked by a coupling mechanism such that other components in the group are susceptible to the same cause and failure mode.
– Equipment failures are not caused by the failure of equipment outside the established component boundary.
P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.
0. 40
0. 35
0. 30
0. 25
0. 20
0. 15
0. 10
0. 05
0. 00
1 98 0
198 5
19 90
199 5
20 00
2 005
F i s c al Y ear
O ccur r ence Rat e
CCF OCCURRENCE RATE
Ye a r l y R a te Lon g- t e r m T r en d Sh o r t- te r m T r e n d 9 5% B oun d 5% B oun d
P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.
DDITIONAL CCF GRAPH
A
S
C o upl i ng F a c t or s - C o mpl e t e C C F E v e nt s
E n v i r onm e nt 14 . 2 %
Op e r a t i o n s 13 . 7 %
Department of Nuclea r S c ien ce and Engineering
M a i nt e na nc e 28 . 8%
H a rd w a re 43 . 4%
P. Baranowsky, RIOD M Lecture, MIT, 2006
Courtesy of P. Baranowsky. Used with permission. 48