PRA Methodology Overview

22.39 Elements of Reactor Design, Operations, and

Safety

Lecture 9

Fall 2006

George E. Apostolakis Massachusetts Institute of Technology

PRA Synopsis

Figure removed due to copyr i ght restrictions.

Futron Corp . , International Spa ce Station PRA, Dec . 2000

NPP End States

Various states of degradation of the reactor core.

Release of radioactivity from the containment.

Individual risk.

Numbers of early and latent deaths.

Number of injuries.

Land contamination.

The Master Logic Diagram (MLD)

Developed to identify Initiating Events in a PRA.

Hierarchical depiction of ways in which system perturbations can occur.

Good check for completeness.

MLD Development

Begin with a top event that is an end state.

The top levels are typically functional.

Develop into lower levels of subsystem and component failures.

Stop when every level below the stopping level has the same consequence as the level above it.

Nuclear Power Plant MLD

Ex c e ssiv e Offsite Rel eas e

Ex c e ssiv e Re le a s e of Core Materia l

Ex c e ssiv e Re le a s e of

Non- Core Materia l

Ex c e ssiv e Core D amage

RC S pres sure Bo un dary Fa ilure

Co ndi ti o n al Conta i nment Fa ilure

Insuffi c i ent Reac tiv i t y Contro l

Insuffi c i ent Core-he at Remov a l

Insuffi c i ent RC S Inv entory Contro l

Insuffi c i ent RC S Heat Remov a l

Insuffi c i ent RC S Pressure Contro l

Insuffi c i ent Iso l at io n

Insuffi c i ent Pressure & Temperature Contro l

Insuffi c i ent Co m b us t i bl e Gas Co ntrol

NPP: Initiating Events

Transients

Loss of offsite power

Turbine trip

Others

Loss-of-coolant accidents (LOCAs)

Small LOCA

Medium LOCA

Large LOCA

ILLUSTRATION EVENT TREE: Station Blackout Sequences

S eal

LO S P DG s LO C A EF W E P R e c . C o n t .

EN D ST AT E

0.0 7 pe r yr

0.99 3

su cc e ss

0.00 7

0

su cc e ss

su cc e ss

co r e m e l t

c o re m e l t w / re l e a s e

1

0 . 9 5

0 . 9 9

su cc e ss

0. 01

co r e m e l t 4. 70E - 06

c o re m e l t w / re l e a s e

0 . 05

0. 94

su cc e ss

0. 06

co r e m e l t 1. 50E - 06

c o re m e l t w / re l e a s e

From : K. Kiper, MIT Lecture, 2006 Courtesy of K. Kiper. Used with permission.

LOSP Distribution

Epistemi c Uncertainties

5th 0 .005/yr (200 yr)

Median 0.040/yr (25 yr)

Mean 0.070/yr (14 yr)

95th 0 .200/yr ( 5 yr)

From : K. Kiper, MIT Lecture, 2006 Courtesy of K. Kiper. Used with permission.

Offsite Power Recovery Curves

C u m u l at i ve N o n - R eco ver y o f P o w er F r eq u en cy

1

0. 9

90t h P er c ent i l e 50t h P er c ent i l e 10t h P er c ent i l e

0. 8

0. 7

0. 6

0. 5

0. 4

0. 3

0. 2

0. 1

0

0 2 4 6 8 10 12 14 16 18 20 22 24

Ti m e A f t e r P ow e r Fa i l ur e ( H r )

From : K. Kiper, MIT Lecture, 2006 Courtesy of K. Kiper. Used with permission.

STATION BLACKOUT EVENT TREE

Co urtesy o f U.S. NRC.

NPP: Loss-of-offsite-power event tree

LOOP Secondary Bleed Recirc. Core Heat Removal & Feed

OK

OK

PDSi PDSj

Human Performance

The operators must decide to perform feed & bleed.

Water is “fed” i nto the reactor vessel by the high- pressure system and is “bled” out through relief valves into the containment. Very costly to clean up.

Must be initiated within about 30 minutes of losing secondary cooling (a thermal-hydraulic calculation).

J. Rasmussen’s Categories of Behavior

Skill-based behavior: Performance during acts that, after a statement of intention, take place withou t conscious control as smooth, automated, and highl y integrated patterns of behavior.

Rule-based behavior: Performance is consciously controlled by a stored rule or procedure.

Knowledge-based behavior: Performance during unfamiliar situations for which no rules for control are available.

Reason’s Categories

Unsafe acts

U nintended action

S lip

L a p s e

M i s t a k e

I ntended violation

Latent conditions

Weaknesses that exist within a system that create contexts for human error beyond the scope of individual psychology.

They have been found to be sign ificant contributors to incidents.

Incidents are usually a combination of hardware failures and human errors (latent and active).

Reason’s model

Fallible

Decis i ons

Line Management

Deficiencies

Psychological

Precursors

Unsafe

Acts

J. Reason, Human Error , Cambridge University Press, 1990

Pre-IE (“routine”) actions

Median EF

Errors of commission 3x10 -3 3

Errors of omission 10 -3 5

A.D. S w ain and H.E. Guttmann, Handbook of Human Reliability Analysis with Emphasis on N u clear Power Plant A pplications, Report NUREG/CR-1278, US Nuclear Regula tory Commiss ion, 1983.

Post-IE errors

Models still being developed.

T ypically, they include detailed ta sk analyses, ident i fication of performance shaping factors (PSFs), and the subjective assessment of probabilities.

PSFs: System design, facility cult ure, organizational factors, stress level, others.

The ATHEANA Framework

Plant Desig n ,

Error- Forcing Context

Perf ormance

Human Error

PRA

Logic Models

Risk

Operation s and Maintenanc e

Sha pi n g Factors

Error Mechanisms

Unsafe Actions

Human Fai l ure Events

Management Decisions

Scenario Definition

Plant C onditions

NUREG/CR-6350, May 1996.

Risk Models

DD

CC

BB

AA

IE 2

#

END - STATE- NAM ES

1 O K

2 T => 4 TR AN1

3 L O V

4 T => 5 TR AN2

5 L O C

6 L O V

AA

A1 A2

BB

B- G AT E1 B- G AT E2

B- G A TE3

EVEN T - B1 EVEN T - B2 EVENT- B3

B- G A TE4

EVEN T - B4 EVEN T - B5

B- G A TE5

B- G A TE6

B- G AT E7

EVEN T - B6 EVENT- B7 EVEN T - B8 EVEN T - B9 EVENT- B1 0 EVEN T - B1 1

FEED & BLEED COOLING DURING LOOP 1-OF-3 SI TRAINS AND 2-OF-2 PORVS FOR SUCCESS

Co urtesy o f U.S. NRC.

HIGH PRESSURE INJECTION DURING LOOP 1-0F-3 TRAINS FOR SUCCESS

Co urtesy o f U.S. NRC.

Cut sets and minimal cut sets

CUT SET : Any set of events (failures of components and human actions) that cause system failure.

MINIMAL CUT SET : A cut set that does not contain another cut set as a subset.

S

E

E

Indicator Variables

1 , I f E j i s T

X j =

0 , I f E j i s F

Important Note: X k = X, k: 1 , 2,

Venn Diagram

X T = φ ( X 1 , X 2 ,…X n ) φ ( X )

φ ( X ) is the structur e o r switchin g function .

It maps an n-dimensional vector of 0s and 1s onto 0 or 1.

Disjunctiv e Norma l Form :

X T 1

N

( 1

1

M i )

N

M i

1

Sum-of-Product s Form :

N N 1 N

N 1 N

X T

M i M i M j

... ( 1 )

M i

i 1

i 1

j i 1

i 1

Dependent Failures: An Example

B 1 a nd B 2 ar e i d e n t i cal

C o m pone n t B 1

r e dunda nt c om pone nt s

C om pone nt B 2

MCS: M 1 = {X A } M2 = {X B1 , X B2 }

System Logic

X S = 1 ( 1 X A )(1 X B1 X B2 ) =

= X A + X B1 X B2 - X A X B1 X B2

Failure Probability

P(fail) = P(X A ) + P(X B1 X B2 ) P(X A X B1 X B2 )

Example (cont’d)

In general, we cannot assume independent failures of B 1 and B 2 . This means that

P(X B1 X B2 ) P(X B1 ) P(X B2 )

How do we evaluate these dependencies?

Dependencies

Some dependencies are modeled explicitly, e.g., fires, missiles, earthquakes.

After the explicit modeling, there is a class of causes of failure that are treated as a group. They are called common-cause failures.

Special I ssue on Dependent Failur e Analysis, Reliability Engineering and System Safety, vol. 34, no. 3, 1991.

The Beta-Factor Model

The

β -factor model assumes that common-

cause events always involve failure of all

components of a common cause component group

It further assumes that

CCF

total

Generic Beta Factors

0. 2

GE N E RI C B E T A F A CT O R ( M E AN V AL UE )

0.18

0.16

0.14

0.12

0. 1

0.08

0.06

0.04

0.02

R E ACT O R T RI P BRAKE R S

DI SSEL G E NERAT O R S

MO T O R VA L V E S

PW R SAF ET Y /R E L IE F PUM P S

BW R SAF ET Y /R E L I EF VAL VES

R H R PUM P S

SI PUM PS

C O NT S PRAY P U MP S

AFW P U MP S

SW / CCW PUM PS

0

A ver age

Data Analysis

The process of collecting and analyzing information in order to estimate the parameters of the epistemic PRA models.

Typical quantities of interest are:

Initiating Event Frequencies

Component Failure Frequencies

Component Test and Maintenance Unavailability

Common-Ca use Failure Probabilities

Human Error Rates

General Formulation

X T = φ ( X 1 ,…X n ) φ ( X )

X T 1

N

( 1

1

M i )

N

M i 1

N N 1 N

N 1 N

X T M i

M i M j

... ( 1 )

M i

i 1

i 1 j i 1

i 1

X T : the TOP event indicator variable (e.g., core melt, system failure)

M i : the i th minimal cut set (for systems) or accident sequence (for core melt, containment failure, et al)

TOP-event Probability

P X

N P M

1 N 1 P N M

T i

i

1 1

N

P X T

P M i

1

Rare-event approximation

k

m

The question is how to calculate the probability of M i

P ( M i )

P ( X i

... X i )

RISK-SIGNIFICANT INITIATING EVENTS

Risk-Sig nif i cant Init iat i ng Event

Period

Number of Ev e nts

Mean Frequency

Tren d

General Transien ts

1998 2004

2120

7.57 E-1

B WR General Transie n ts

1997 2004

699

8.56 E-1

PWR Ge neral Transie n ts

1998 2004

1421

7.10 E-1

Loss o f Fee d w ater

1993 2004

188

9.32 E-2

Loss of Heat Sin k

1995 2004

259

1.24 E-1

B W R L o ss of Heat Si n k

1996 2004

154

1.88 E-1

PWR L o ss of Heat Si n k

1991 2004

105

9.23 E-2

Loss o f In strument Air (BWR)

1994 2004

19

7.60 E-3

Loss o f In strument Air (PWR)

1990 2004

17

1.19 E-2

Loss of Vital AC Bus

1988 2004

43

2.98 E-2

Loss of Vital DC Bus

1988 2004

3

2.35 E-3

Stuck Open SRV (BWR)

1993 2004

14

2.07 E-2

Stuck Open SRV (PWR)

1988 2004

2

2.30 E-3

Steam Generator Tube Rupture

1988 2004

3

3.48 E-3

Very Small LOCA

1988 2004

5

3.92 E-3

Department of Nuclea r S c ien ce and Engineering 35

P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.

5

PW R gene ral t r ans i e nt s , and 90% i n t erv al s

M a x i m u m l i k e l i h ood es t i m a t e (n / T ) (ba se l i ne p e ri od)

90% i nt er v al (pr edi c t i o n l i m i t s )

Fi t t ed l i n e

4

3

2

1

0

198 8 1 990 199 2 19 94

1 996

Y ear

19 98 2 000

Lo g m od el p - v al ue < = 0. 00005

200 2 2 004

PQ PL Nov . 1, 2 005

5

BW R gener al t r a ns i ent s, and 90 % i nt e rv al s

M a xi m u m l i k el i hoo d es t i m a t e (n/ T ) (bas el i ne per i od)

90% i nt er v a l ( pr edi ct i on l i m i t s )

F i t t ed l i ne

4

3

2

1

0

198 8 1 990 199 2 19 94

1 996

Y ear

19 98 2 000

Lo g m od el p - v al ue < = 0. 00005

200 2 2 004

BQ PL Nov . 1, 2 005

1. 2

1. 0

BW R l os s of heat s i nk , and 90% i nt erv a l s

M a xi m u m l i k el i hoo d es t i m a t e (n/ T ) (bas el i ne per i od)

90% i nt er v a l ( pr edi ct i on l i m i t s )

F i t t ed l i ne

0. 8

0. 6

0. 4

0. 2

0. 0

198 8 1 990 199 2 19 94

1 996

Y ear

19 98 2 000

Lo g m od el p - v al ue < = 0. 00005

200 2 2 004

BLPL N o v . 1, 2005

INITIATING EVENT TRENDS

Even ts / re acto r cri t i c al ye ar

Even ts / re acto r cri t i c al ye ar

PWR General Transients BWR General Transients

Even ts / re acto r cri t i c al ye ar

Even ts / re acto r cri t i c al ye ar

PWR Loss of Heat Sink BWR Loss of Heat Sink

0. 5

PW R l o s s of heat s i nk , a nd 90% i n t e r v al s

M a x i m u m l i k e l i h ood es t i m a t e (n / T ) (ba se l i ne p e ri od)

90% i nt er v al (pr edi c t i o n l i m i t s )

Fi t t ed l i n e

0. 4

0. 3

0. 2

0. 1

0. 0

198 8 1 990 199 2 19 94 1 996 19 98 2 000 200 2 2 004

Lo g m od el p - v al ue = 0. 02 0 Y ear PLPL N o v . 9, 2005

P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.

Department of Nuclea r S c ien ce and Engineering 36

INITIATING EVENTS INSIGHTS

Most initiating events have decreased in frequency over past 10 years.

Combined initiating event frequencies are 4 to 5 times lower than values used in NUREG-1150 and IPEs.

General transients constitute majority of initiating events; more severe challenges to plant safety systems are about one-quarter of events.

P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.

Department of Nuclea r S c ien ce and Engineering 37

ANNUAL LOOP FREQUENCY TREND

0.25

O c cu r r en c e R at e ( p er r e act o r cr i t i c al year )

0.20

0.15

0.10

0.05

2004

2003

2002

2001

2000

1999

1998

1997

1996

1995

1994

1993

1992

1991

1990

1989

1988

1987

1986

0.00

Y ear l y 86- 96 T r end 86- 96 U pper B ound 86- 96 Low er B ound 97- 02 T r end 97- 02 U pper B ound 97- 02 Low er B ound

Department of Nuclea r S c ien ce and Engineering 38

P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.

ANNUAL LOOP DURATION TREND

1000. 00

100. 00

D u r a ti o n (h r s . )

10. 00

1. 00

0. 10

2004

2003

2002

2001

2000

1999

1998

1997

1996

1995

1994

1993

1992

1991

1990

1989

1988

1987

1986

1985

0. 01

T r end 1986- 96 5% Low er B o und 95% U p per B o und O b s e r v ed w i th B ounds T r end 1997- 2003 5% Low e r B ound 95% U pper B o und

Department of Nuclea r S c ien ce and Engineering

P. Baranowsky, RIODM Lecture, MIT, 2006

Courtesy of P. Baranowsky. Used with permission.

39

LOOP FREQUENCY INSIGHTS

Overall LOOP frequency during critical operation has decreased over the years (from 0.12/ry to 0.036/ry)

Average LOOP duration has increased over the years:

Statistically significant increasing trend f o r 1986–1996

Essentially constant over 1997–2004

24 LOOP events between 1997 and 2004; 19 during the “summer” period

No grid-related LOOP events between 1997 and 2002; 13 in 2003 and 2004

Decrease in plant-centered and switchyard-centered LOOP events; grid events are starting to dominate

Department of Nuclea r S c ien ce and Engineering 40

P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.

SYSTEM RELIABILITY STUDY RESULTS

STUDY

MEAN UNRELIABILITY

UNPLANNED DEMAND

TREND

FAILURE RATE TREND

UNRELIABILITY TREND

AFW (1987–2004)

5.19 E-4

EDG

(1997–2004)

2.18 E-2

N/A

N/A

HPCI (1987–2004)

6.25 E-2

HPCS (1987–2004)

9.48 E-2

HPI (1987–2004)

1.09 E-3

IC (1987–2004)

2.77 E-2

RCIC (1987–2004)

5.18 E-2

Department of Nuclea r S c ien ce and Engineering

P. Baranowsky, RIODM Lecture, MIT, 2006

Courtesy of P. Baranowsky. Used with permission.

41

0. 030

ED G un av ail a b i l i t y ( n o r e c o v . ) ( FTS m o de l) an d 90 % i n t e r v als

F i tt ed m o d e l

90 % c o nf id en c e ba nd

0. 025

0. 020

0. 015

0. 010

0. 005

0. 000

19 97 1 99 8 19 99 2 00 0 20 01 2 00 2

Lo g m o del p- v a lu e = 0 . 00 062

Fisca l Y e ar

20 03 2 00 4

U 0 nr L A u g. 31 , 2 0 0 5

0. 00 14

0. 00 12

A F W un av a i l ab i l i t y ( F T S m o de l ) an d 90 % i nt er v al s

Fi t t e d m o d e l

9 0 % co nfi d en c e b an d

0. 00 10

0. 00 08

0. 00 06

0. 00 04

0. 00 02

0. 00 00

19 8 8 19 9 0 19 92 19 94 19 96 19 98 20 00 20 02 20 04

Lo g m o del p- v a lu e = 0 . 44

Fisca l Y e ar

U 0 L A u g . 3 0 , 20 05

0. 0 07

0. 0 06

H P I 8 - ho ur un r e l i a b i l i ty ( C N ) an d 90 % i n ter v al s

Fi t t e d m o d e l

9 0 % co nfi d en c e b an d

0. 0 05

0. 0 04

0. 0 03

0. 0 02

0. 0 01

0. 0 00

19 88 19 90 19 92 19 94 19 96 19 98 20 00 20 02 20 04

Lo g m o del p- v a lu e = 0 . 02 9

Fisca l Y e ar

U 8 L Jan . 3 1 , 20 06

0. 00 40

0. 00 32

0. 00 24

0. 00 16

0. 00 08

0. 00 00

19 8 8 19 9 0 19 92 19 94 19 96 19 98 20 00 20 02 20 04

Lo g m o del p- v a lu e = 0 . 23

Fisca l Y e ar

U 8 L O c t. 1 1 , 20 0 5

PWR SYSTEM RELIABILITY STUDIES

E D G u n a v a ila bili ty ( n o r e c o v . ) ( F T S mo de l)

A F W un a v aila b ilit y ( F T S mo de l)

EDG Unavailability (FTS) AFW Unavailability (FTS)

HP I 8- ho ur u n r e l i ab ilit y ( C N)

AFW 8-ho ur u n rel i a b i l i ty

HPI Unreliability (8 hr mission) AFW Unreliability (8 hr mission)

A F W 8- h o u r un r e l i a b i l i t y an d 90 % in ter v a l s

Fi t t e d m o d e l

9 0 % co nfi d en c e b an d

P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.

Department of Nuclea r S c ien ce and Engineering 42

PWR SYSTEM INSIGHTS

EDG

EDG start reliability much improved over past 10 years.

Failure-to-run rates lower than in most PRAs.

AFW

Industry average reliability consiste nt with or better than Station Blackout and ATWS rulemaking.

Wide variation in plant specific AFW reliability primarily due to configuration.

Failure of suction source identified as a contributor (not directly modeled in some PRAs).

HPI

Wide variation in plant specific HPI reliability due to configuration.

Various pump failures are the do minant failure contributor.

P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.

Department of Nuclea r S c ien ce and Engineering 43

0. 40

0. 35

H P C I 8-ho ur u n rel i abi l i t y and 90% i n t e r v al s

F i t t ed m odel

90% c onf i denc e b and

0. 30

0. 25

0. 20

0. 15

0. 10

0. 05

0. 00

1 988 1 990 1 992 1 994 1 996 19 98 20 00 20 02 20 04

L og m o del p-v a l ue = 0. 0011

Fi scal Y e ar

U 8L O c t . 11, 2 005

0. 08

s

0. 06

0. 04

0. 02

0. 00

1 988 1 990 1 992 1 994 1 996 19 98 20 00 20 02 20 04

L og m o del p-v a l ue = 0. 11

Fi scal Y e ar

U 0L Sept . 1 , 2005

0. 32

0. 28

HPC S 8- hour unr el i ab i l i t y a nd 90% i nt er v al s

Fi t t ed m odel

90 % c on f i de nc e band

0. 24

0. 20

0. 16

0. 12

0. 08

0. 04

0. 00

198 8 19 90 19 92 1 994 1 996 1 998 2 000 200 2 200 4

p- v al ue = 0. 41

Fi scal Y e ar

U 8 O c t . 11, 2 005

0. 25

0. 20

0. 15

0. 10

0. 05

0. 00

198 8 19 90 19 92 1 994 1 996 1 998 2 000 200 2 200 4

Lo g m od el p - v al ue = 0. 14

Fi scal Y e ar

U 8 L O c t . 11, 2005

BWR SYSTEM RELIABILITY STUDIES

HP CI 8 - hou r u nrel i ab il ity

RCIC un avai la bil i ty (FTS mo del )

HPCI Unreliability (8 hr mission) RCI C Unavailability (FTS)

R C I C unav a i l abi l i t y ( F TS m o d e l ) and 90% i n t e r v al

F i t t ed m odel

90% c onf i denc e b and

RC IC 8-ho ur unre lia bil i ty

HPCS Unreliability (8 hr mission) RCI C Unreliability (8 hr mission)

RC I C 8-ho ur u nrel i abi l i t y and 90% i n t erv al s

Fi t t ed m odel

90 % c on f i de nc e band

HPCS 8-h our un rel i ab ili ty

P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.

Department of Nuclea r S c ien ce and Engineering 44

BWR SYSTEM INSIGHTS

HPCI

Industry-wide unreliability show s a statistically significant decreasing trend.

Dominant Failure: failure of the injection valve to reopen during level cycling.

HPCS

Industry average unreliability indicates a constant trend.

Dominant Failure: failure of the injection valve to open during initial i njection.

RCIC

Industry average unreliability indicates a constant trend.

Dominant Failure: failure of the injection valve to reopen during level cycling.

P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.

COMMON-CAUSE FAILURE (CCF) EVENTS

Criteri a for a CCF Event:

Two or more components fail or are degraded at the same plant and in the same system.

Component failures occur within a selected period of time such that success of the PRA mission would be uncertain.

Component failures result from a single shared cause and are linked by a coupling mechanism such that other components in the group are susceptible to the same cause and failure mode.

Equipment failures are not caused by the failure of equipment outside the established component boundary.

P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.

0. 40

0. 35

0. 30

0. 25

0. 20

0. 15

0. 10

0. 05

0. 00

1 98 0

198 5

19 90

199 5

20 00

2 005

F i s c al Y ear

O ccur r ence Rat e

CCF OCCURRENCE RATE

Ye a r l y R a te Lon g- t e r m T r en d Sh o r t- te r m T r e n d 9 5% B oun d 5% B oun d

P. Baranowsky, RIODM Lecture, MIT, 2006 Courtesy of P. Baranowsky. Used with permission.

DDITIONAL CCF GRAPH

A

S

C o upl i ng F a c t or s - C o mpl e t e C C F E v e nt s

E n v i r onm e nt 14 . 2 %

Op e r a t i o n s 13 . 7 %

Department of Nuclea r S c ien ce and Engineering

M a i nt e na nc e 28 . 8%

H a rd w a re 43 . 4%

P. Baranowsky, RIOD M Lecture, MIT, 2006

Courtesy of P. Baranowsky. Used with permission. 48