Advanced L WRs

Jacopo Buongiorno

Associa t e Pr of essor of Nuc l ear Science and Engineering

22.06 : Engineering of Nuclear Systems

Outline

Performance goals for near-term advanced LWRs Technical features of advanced LWRs:

- U S-EPR (Evolutionary Pressurized Reactor)

- US - APWR (Advanced Pressurized W ater Reactor)

- AP1000 (Advanced Passive 1000)

- A BWR ( Advanced BWR )

- ESBWR (Economic Simplified BWR) Summar y of common characteristics Conclusions

2

Nuclear Reactor Timeline

3

Mission/Goals f or Advanced LWRs

Baseload generation of electricity (hydrogen is not emphasized)

Improved economics. Targets:

- Increased plant design life (60 years)

- Shorter construction schedule (36 months * )

- Low overnight capital cost ( $1000/kWe** for NOAK plant)

- Low O&M cost of electricity ( 1¢/kWh)

* First concrete to fuel loading (does not include site excavation and pre-service testing)

** Unrealistic target set in early 2000s . Current contracts in Europe, China and US have overnight capital costs

>$3000/kWe

Improved safety and reliability

- Reduced need for operator action

- Expected to beat NRC goal of CDF<10 -4 /yr

- R e d uce d l arge re l ease pro b a bilit y

- More redundancy or passive safety

4

U . S . NRC C er t i f i ca t i on o f A d vance d L W R s

Design

Applicant

Ty p e

Status

AP1000

W e stinghouse- To s h i b a

Advanced Passive PWR 1 100 MW e

Certified, amendment under review

ABWR

G E-Hitachi

Advanced BWR 1350 MW e

Certified, Constructed in Japan/ T aiwan

ESBWR

GE - Hitachi

Advanced Passive BWR 1550 MW e

Under review

US-EPR

ARE V A

Advanced PWR 1600 MW e

Under review

US - APWR

Mit su bi s hi

Ad vance d PWR 1700 MW e

U n d er rev i ew

U.S. Economic Pressurized Reactor ( US - EPR)

b y A reva

6

US - EPR Overview

1600 MWe PWR

Typical P WR operating conditions in primary system, pressure,

temperatures , etc.

4 loops

linear power ,

Hi g h er pressure i n SG s results in somewhat higher efficiency (35% net)

Safety systems are active High redundancy

7

US - EPR Parameters

P a ra met e r

Cu rren t 4-l o o p PWR

E P R

De sig n lif e , y r s

40

60

Net electri c output, MW e

1100

1600

Reactor pow e r, MW t

3411

4500

P l ant efficienc y, %

32.2

3 5.6

Cold/hot leg tempe r a t ur e, C

292/325

296/329

Reactor pr essure, MPa

15.5

15.5

Total RCS volume, m 3

350

460

N umber of fu el assemblies

1 93

241

T y pe o f fuel assemblies

17x 17

17x 1 7

Ac tive le n g th, m

3.66

4.20

Li nea r pow e r, kW/ m

18 . 3

16 . 4

Control rods

53

89

Steam pressure, MPa

6.7

7.7

Radial refle c t or

No

Yes

SG secondar y invento r y , ton

46

83

US-EPR Safet y

Four identical diesel- driven trains, each 100%, provide redundancy for maintenance or single- failure criterion (N+2)

Physical separation against internal hazards (e.g. fire)

Shield building extends airplane crash and external explosion protection to two safeguard buildings and fuel building (blue walls)

9

US-EPR Safet y ( 2 )

U.S. NRC

Safety Goal

Current U.S. LW R P l a n t s

EPRI Utility Requirement

1 x 10 -4 5 x 10 -5 1 x 10 -5 4 x 10 -7

Core Damage Frequency Per Y ear

10

US-EPR Containment

Inner wall pre-stressed concrete w i t h stee l li ner

Outer wall reinforced concrete

Protection a gainst airplane crash

Protection against external explosions

Annulus sub-atmospheric and filtered to reduce radioisotope release

11

US - E P R S e v e r e A c c i d e n t s M M i i t t i i g g a a t t i i o o n n

IR WST

Corium Spreading Area

E x - vessel core catcher concept (passive)

- Molten core is assumed to breach vessel

- Molten core flows into spreading area and is cooled by IRWST water

- H ydrogen recombiners ensure no detonation within container

12

EPR is bein g built now

Olkiluoto S eptember 2009 T a ishan S eptember 2009

Olkiluoto 3 (Finland) - construction start 2004 Flamanville 3 (France) - construction start 2007 Taishan (China) construction start 2008

Flamanville O ctober 2009

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .

U.S. Advanced PWR (US-APWR)

by Mitsubishi

14

US-APWR Overview

(fundamentally similar to US-EPR)

1700 MWe P WR

Typical PWR operating conditions in primary system, pressure,

temperatures , etc .

Long (14 ft.) fuel assemblies with reduced power density for 24 months operation

4 loops

High efficiency turbine (70" blades) results i n > 35% thermal e fficiency of plant

RPV with no bottom penetrations

Safety systems a re active with h igh redundancy

15

US- A PWR Safet y

HP

16

US- A PWR Safet y ( 2 )

Accumulator design with flow damper eliminates need for active high-pressure injection system

S evere acc id en t s m iti ga ti on b ase d on core - ca t c h er concep t similar to US-EPR

17

Advanced Passive 1000 (AP1000)

b y W es ti ng h ouse- T os hib a

18

AP1000 Overview

1100 MWe PWR

T yp ical PWR o p eratin g conditions, pressure, temperature, flow rates, linear power, etc.

RPV with no bottom penetrations

2 loops, 2 SGs

4 recirculation pumps (canned motor pumps, no shaft seals)

Large pressurize r

50% larger than operating plants

All safety-grade systems

are passive 19

Courtesy of Westinghouse. Used with permission.

A A P P 1 1 0 0 0 0 0 0 P P a a s s s s i i v v e e C o r e C o o l i n g S y s t e m

PRHR HX

Natural circ. heat removal

Passive Safety Injection

Core Makeup T anks (CMT)

Full press, natural circ. inject

Replaces HPCI pumps

Accumulators

Kick in at intermediate pressure

IR WST Injection

Low press (replaces LPCI pumps)

Automatic RCS Depressurization

Courtesy of Westinghouse. Used with permission.

20

A P1000 Passive Containment Coolin g S y stem

21

Courtesy of Westinghouse. Used with permission.

AP1000 Severe Accidents Mitigation

Core-Concrete Interaction

In- V essel Retention (IVR) / ex-vessel cooling

Means of cooling damaged core

T e sts and analysis of IVR reviewed by

U . S . NRC

ST E A M VE N T S

R E AC T O R VESSE L

RE A C TO R V E S S E L S U PP O R T ST E E L

High Pressure Core Melt TYP I C A L 4 PL AC ES

Eliminated by redundant, diverse ADS

Hydrogen Burn, Detonation

Hydrogen vent paths from RCS kept away from containment shell

Wa te r

CORE

4.8 m

Vessel

SHI E L D WAL L

IN S U LA T I O N

Redundant, diverse igniters

Steam Explosions

Ex-vessel prevented by IVR

Coriu m me lt

W A TE R I N LE T

22 cm W at e r

Courtesy of Westinghouse. Used with permission. 22

AP1000 videos

ECCS

http://ww w .ap1000.westinghousenucl ea r .com/ap1000_psrs_pccs.html

PCCS

http://ww w .ap1000.westinghousenucl ea r .com/ap1000_psrs_pcs.html

IVR

http://ww w .ap1000.westinghousenuclea r .com/ap1000_safety_ircd.html

AP1000 Safety Margins and Risk

T y p i cal P l an t A P 1000

Los s F l ow M a r g in t o ~ 1 - 5% ~ 1 6% D N B R L i m i t

F eedline Br e a k ( o F) >0 o F ~ 140 o F S u b c o o l i n g M a r g i n

S G T u be R u pt ur e O per a t o r ac t i ons O per at or ac t i ons

r e quir ed in 10 m i n NO T re q u i r e d

Sm a l l LO C A 3 " LO C A < 8 " LO C A

co r e u n co v e r s NO co r e

PC T ~ 1 5 0 0 o F u nc ov er y

Lar ge LO C A P C T ( o F) 2000 - 2200 o F < 1600 o F

2.05 E- 08 / y r

5.40 E- 10 / y r

1.40 E- 08 / y r

3.50 E- 08 / y r

1.95 E- 0 8 / y r

7.10 E- 1 1 / y r

4.54 E- 0 9 / y r

2 .41 E- 0 8 / yr

1 .23 E- 0 7 / y r

3 .22 E- 0 9 / y r

8.52 E- 0 8 / y r

2 .11 E- 0 7 / y r

2.41 E- 07 / y r

8.80 E- 10 / y r

5 .61 E- 0 8 / y r

2.98 E- 07 / y r

L arge R e lease F requency

At -P ow er Shut dow n

w i th u n c e r ta i n ty (1 )

Core D a mage F requency

At - P ow er Shut do w n

24

5.92 E- 0 8

1 E- 6

5.09 E- 07

1 E- 4

I n t e rnal Ev ents I n t e rnal Fl oods I n t e rna l Fi res

Sub- T o t a l s G r an d - To tals

NR C Sa f e t y Go a l s

Courtesy of Westinghouse. Used with permission.

Use o f passive safety systems s implifies the p l a nt

Diagram showing how passive safety systems simplify the plants.

S a f e t y V a l v e s P u m p s S a f e t y P i p e S e i s m i c B u i l d i n g V o l u m e C a b l e

R e d u c e d N u m b e r o f C o m p o n e n t s :

1 0 0 0 M W R e f e r e n c e

A P 1 0 0 0

R e d u c t i o n

S a f e t y V a l v e s

2 8 4 4

1 4 0 0

5 1 %

P u m p s

2 8 0

1 8 4

3 4 %

S a f e t y P i p i n g

1 1 . 0 x 1 0 4 f e e t

1 . 9 x 1 0 4 f e e t

8 3 %

C a b l e

9 . 1 m i l . f e e t

1 . 2 m i l . f e e t

8 7 %

S e i s m i c B u i l d i n g V o l u m e

1 2 . 7 m i l . f t 3

5 . 6 m i l . f t 3

5 6 %

Image by MIT OpenCourseWare. 25

…an d R e d uces S a f e t y /S e i sm i c B u ildi ng V o l ume

LE G E N D :

1 . C O NTA I NM E N T/ S H I E L D B U I L DI NG

6 2 . S A F E G U A R D B U I L DI NG

3. F U E L B U I L D I N G

4 . A U X I L I A R Y B U I L DI NG

5 . DI E S E L G E N E R A TO R B U I L DI NG

6. E S S E N T IAL S E R V I C E W A T E R / CI RCU L A T I N G W A T E R P U M P H O U S E

7. L I Q U ID R A D W A S T E B U I L D I N G

2 2

2 4

5 5

2 1 2 1

4 7 3 7

3

EP R A P 1000

Sa f e t y /

Se i s m i c St r u ct u r e s

S a f et y / S ei s m i c S t r u c t u r e s

0 20 40 60 80 10 0M

Courtesy of Westinghouse. Used with permission.

26

A P1000 Construction

Simplification of Systems

Reduction in bulk materials and field labo r

Maximum Use of Modularization

300 rail-shippable equipment and piping modules

50 l arge s t ruc t ura l mo d u l es ( assem bl e d on-s it e )

- U nder construction at T a ishen (China) since 2008

- 4 P&E orders in US Courtesy of Westinghouse. Used with permission.

Advanced BWR (ABWR) and Economic Simplified B WR (ESBWR)

b y G enera l El ec t r i c- Hit ac hi

28

ABWR O verview

1350 MW e BWR

T y pical BWR operating con diti ons, pressure,

Steam dryer

temperature, linear powe r ,

Steam nozzle

etc.

Steam separator

Internal recirculation pumps

nozzle

Feedwater (no jet pumps) = no external

Fuel assem b lies

loop

Pressure vessel Large vessel with large

water inventory + no large

V e ssel support Control rod piping = no core uncovery

skirt

guide tubes

Redundant active safety

Recirculation pum p

Control rod drives systems

Proven technology (built and operated for over ten years in Japan and T a iwan) 29

Courtesy of GE Hitachi Nuclear Systems. Used with permission.

Clos u r e H ea d St e a m D r y e r

ESBWR O verview

1550 MW e BWR

T yp i ca l BWR opera ti ng

DP V / I C O u t l et

S t e a m S e par a t or s

R W CU / S DC

Out l e t

IC R e t u r n GDC S I n l e t

Su p p o r t ( s li ding blo c k )

GDC S E q u a l i z i ng L i ne I n l et

Core S h ro ud

Cont rol R od Gui d e T u b e s

I n - c or e H ou s i n g

M a in S t e a m L in e F l o w R e st ri ct o r

RP V S t a b i l i z e r

Fe ed wat e r I n l et

Ch i m n e y

C h i m n e y P arti ti on s Co r e T o p G u i de

Fu el A s s e m b li es C o r e P l a t e

S h r o ud S u p p or t

CR D H o u si n g

C o n t rol R od Dri v es ( C RD)

conditions, pressure, temperature, linear powe r , etc .

Natural circulation reactor = No reactor pumps

Large vessel with large water inventory

Core at lower elevation within vessel

All safety-grade systems are passive

ES BW R R e a ct o r

30

Courtesy of GE Hitachi Nuclear Systems. Used with permission.

BWR Primar y S y stem Evolution

D r e s d e n 1 KRB

O y s t er C r eek

Dr es d e n 2

ABWR

SBW R

ES BW R 31

Courtesy of GE Hitachi Nuclear Systems. Used with permission.

ABWR & ESBWR B alance o f P lant is T r aditional

Courtesy of GE Hitachi Nuclear Systems. Used with permission.

32

ABWR & ESBWR Parameters

Parameter

BWR/4-Mk

I (Browns Ferry 3)

BWR/6-M k III

(Grand Gulf)

ABWR

ESBWR

Power (MWt/MW e )

3293/1098

3900/1360

3926/1350

4500/1550

V essel height/dia. (m)

21.9 /6.4

21.8 /6.4

21.1 /7.1

27.7 /7.1

Fuel Bundles (number)

764

800

872

1 132

Active Fuel Height (m)

3.7

3 .7

3.7

3 .0

Power density (kW/L)

50

54 . 2

51

54

Recirculation pumps

2(large)

2(large)

10

zero

Number of CRDs/type

185/LP

193/LP

205/FM

269/FM

Safety system pumps

9

9

1 8

zero

Safety diesel generator

2

3

3

zero

Core damage freq . /yr

1E - 5

1E - 6

1E - 7

1E - 7

Safety Bldg V o l (m 3 /MW e )

1 1 5

150

160

<100

33

Courtesy of GE Hitachi Nuclear Systems. Used with permission.

A BWR Safet y

Steam line

CSS

CSS

Feedwater line

HPCF

HPCF

Feedwater line

LPFL

LPFL

LPFL

Supression Pool

LPFL

LPFL

Condensate Storage Pool

Supression Pool

LPFL

SPC

Supression Pool

RHR RHR

SPC

Supression Pool

RHR

RCIC

Division 2 Division 1 Division 3

G D G D G D

Division 1 Division 2 Division 3

ECCS RHR 34

Courtesy of GE Hitachi Nuclear Systems. Used with permission.

ESBWR Enhanced Natural Circulation

AB W R BWR/6

ESBWR

4.5

ABW R L U N G MEN

CL INT O N

4.0

ESBW R 1 1 3 2 - a

Average Powe r per Bundle (M Wt)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.0 1 .0 2. 0 3 . 0 4. 0 5 .0 6. 0 7 . 0 8 . 0 9 .0 1 0 .0

N Po w e r F l ow - 11 32 - 4 5 00. X L S C h a r t1 ( 5 )

A v er age Fl ow per Bundl e (kg/ s)

Higher driving head

Chimney/taller vessel

Reduced flow restrictions

Shorter core

Increase downcomer area

Courtesy of GE Hitachi Nuclear Systems. Used with permission.

35

ESBWR Stabilit y

ESBWR is designed to operate with significant margin to any instability regions 36

Courtesy of GE Hitachi Nuclear Systems. Used with permission.

ESBWR Passive Safet y

37

Courtesy of GE Hitachi Nuclear Systems. Used with permission.

ESBWR Passive Safet y

Decay Heat HX’ s High Elevation

Above Drywell Gravity Drain Pools

All Pipes/V a lves Inside Containment

Raised Suppression Pool

38

Courtesy of GE Hitachi Nuclear Systems. Used with permission.

ESBWR P assive Systems

Isolation Condensers System (ICS)

High p ressure residual heat removal

Safety Relief Valves (SRV)

Prevent reactor overpressurization discharging steam into suppression poo l

Suppression Pool

Absorbs blowdown energy during LB-LOCA.

Gravity Driven Cooling System (GDCS)

Low pressure residual heat removal following LB-LOCA. Kee p s the core covered.

Passive Containment Cooling System (PCCS)

Long-term heat removal from containment

No operator action needed for 7 2 hours

39

ESBWR Severe Accident Mitigation

Containment filled with inert gas

I n-vesse l re t en ti on i s comp li ca t e d b y CRDM penetrations, so it is not done.

Q uench molten core b y delu g e from the GDCS tanks

If molten material drips through vessel, there is a sacrificial c oncrete shield (core c atcher) o n t he containment floor

Easy to refill PCCS pool and continue to remove th e h ea t f rom th e vesse l i n d e fi n it e l y

Fission Product Control

Hold up and filtering

40

Com p arison of Safet y S y stem - P assive vs. Active

DG Room Emerge n c y Initiation

Ventila tio n Bus Load in g Signa l

Sys t em Progra m

Emerge n c y Bus

Diesel Genera t o r Room 1 of 3 DG Cooling Plant

HVAC Q

Plant

DC

Pwr

ADS ADS

C r ank cas e Ventila tio n

Water Sy stem Servic e

Water

G e ner a t or

Serv ice Water Breake r Pump Motor

L o ads Log ic

Aux .

Contro l an d

Water Source Water

Engin e Govern in g Contro l

Protectio n

HVAC Q

RPV

Source

DG Lubrica t io n Diesel G e ner ator

React o r S/P

Breake r

C o mp onen t

Oil System

Starting Air

Air Intak e & Exhaust

Breaker Closes

< 10 s

Cooling Water L o ads P ump M o t or

RCCW

Core

M

DC DG Fuel

Pwr Oil System

DG Fuel Oil Storag e and

HVAC Plant Service

A

ECCS

Log ic

M

Emergency Core Wa te r C oo li ng S ys t em

Breake r Pump Motor A

Typical of HPCS,

Initiation Signa l

Transfe r System LPCS, & RHR

Conventional Active Plant

Passive Plant

41

Courtesy of GE Hitachi Nuclear Systems. Used with permission.

Reduction in Systems & Buildings with Passive Systems

ABWR ESBWR

(higher power , smaller buil d 4 i 2 ng)

Courtesy of GE Hitachi Nuclear Systems. Used with permission.

Summary Features of Advanced LWRs

Reactor

US-EPR

US-APWR

A P1000

ABWR

ESBWR

Neutron spectrum

Thermal

Thermal

Thermal

Thermal

Thermal

Coolant/moderator

H 2 O/H 2 O

H 2 O/H 2 O

H 2 O/H 2 O

H 2 O/H 2 O

H 2 O/H 2 O

Fuel

LEU pins

LEU pins

LEU pins

LEU pins

LEU pins

Use of proven

technology

++

++

+

+ +

+

Plant simplification

+ +

+ +

M o d u l ar cons t ruc ti on

+

+

Economy of scale

++

++

+

+ +

High thermal ef ficiency

+

+

Passive safety

+

+

Miti g ation of severe accidents

Core catcher

Core c atcher

In-vessel retention

-

C ore catcher

Potential Issues for De p lo y ment of Advanced LWRs in the U.S.

No capabilities for manufacturing heavy components left. Need to buy from overseas.

Shortage of specialized workforce experienced in nuclear construction ( e. g . , welders ) .

Slow licensing process

Fi nanc i a l r i s k i n d eregu l a t e d mar k e t s

44

MIT OpenCourseWare http://ocw.mit.edu

22.06 Engineering of Nuclear Systems

Fall 20 10

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .