Advanced L WRs
Jacopo Buongiorno
Associa t e Pr of essor of Nuc l ear Science and Engineering
22.06 : Engineering of Nuclear Systems
Outline
Performance goals for near-term advanced LWRs Technical features of advanced LWRs:
- U S-EPR (Evolutionary Pressurized Reactor)
- US - APWR (Advanced Pressurized W ater Reactor)
- AP1000 (Advanced Passive 1000)
- A BWR ( Advanced BWR )
- ESBWR (Economic Simplified BWR) Summar y of common characteristics Conclusions
2
Nuclear Reactor Timeline
3
Mission/Goals f or Advanced LWRs
Baseload generation of electricity (hydrogen is not emphasized)
Improved economics. Targets:
- Increased plant design life (60 years)
- Shorter construction schedule (36 months * )
- Low overnight capital cost ( $1000/kWe** for NOAK plant)
- Low O&M cost of electricity ( 1¢/kWh)
* First concrete to fuel loading (does not include site excavation and pre-service testing)
** Unrealistic target set in early 2000s . Current contracts in Europe, China and US have overnight capital costs
>$3000/kWe
Improved safety and reliability
- Reduced need for operator action
- Expected to beat NRC goal of CDF<10 -4 /yr
- R e d uce d l arge re l ease pro b a bilit y
- More redundancy or passive safety
4
U . S . NRC C er t i f i ca t i on o f A d vance d L W R s
Design |
Applicant |
Ty p e |
Status |
AP1000 |
W e stinghouse- To s h i b a |
Advanced Passive PWR 1 100 MW e |
Certified, amendment under review |
ABWR |
G E-Hitachi |
Advanced BWR 1350 MW e |
Certified, Constructed in Japan/ T aiwan |
ESBWR |
GE - Hitachi |
Advanced Passive BWR 1550 MW e |
Under review |
US-EPR |
ARE V A |
Advanced PWR 1600 MW e |
Under review |
US - APWR |
Mit su bi s hi |
Ad vance d PWR 1700 MW e |
U n d er rev i ew |
U.S. Economic Pressurized Reactor ( US - EPR)
b y A reva
6
US - EPR Overview
1600 MWe PWR
Typical P WR operating conditions in primary system, pressure,
temperatures , etc.
4 loops
linear power ,
Hi g h er pressure i n SG s results in somewhat higher efficiency (35% net)
Safety systems are active High redundancy
7
US - EPR Parameters
P a ra met e r |
Cu rren t 4-l o o p PWR |
E P R |
||
De sig n lif e , y r s |
40 |
60 |
||
Net electri c output, MW e |
1100 |
1600 |
||
Reactor pow e r, MW t |
3411 |
4500 |
||
P l ant efficienc y, % |
32.2 |
3 5.6 |
||
Cold/hot leg tempe r a t ur e, C |
292/325 |
296/329 |
||
Reactor pr essure, MPa |
15.5 |
15.5 |
||
Total RCS volume, m 3 |
350 |
460 |
||
N umber of fu el assemblies |
1 93 |
241 |
||
T y pe o f fuel assemblies |
17x 17 |
17x 1 7 |
||
Ac tive le n g th, m |
3.66 |
4.20 |
||
Li nea r pow e r, kW/ m |
18 . 3 |
16 . 4 |
||
Control rods |
53 |
89 |
||
Steam pressure, MPa |
6.7 |
7.7 |
||
Radial refle c t or |
No |
Yes |
||
SG secondar y invento r y , ton |
46 |
83 |
US-EPR Safet y
Four identical diesel- driven trains, each 100%, provide redundancy for maintenance or single- failure criterion (N+2)
Physical separation against internal hazards (e.g. fire)
Shield building extends airplane crash and external explosion protection to two safeguard buildings and fuel building (blue walls)
9
US-EPR Safet y ( 2 )
U.S. NRC
Safety Goal
Current U.S. LW R P l a n t s
EPRI Utility Requirement
1 x 10 -4 5 x 10 -5 1 x 10 -5 4 x 10 -7
Core Damage Frequency Per Y ear
10
US-EPR Containment
Inner wall pre-stressed concrete w i t h stee l li ner
Outer wall reinforced concrete
Protection a gainst airplane crash
Protection against external explosions
Annulus sub-atmospheric and filtered to reduce radioisotope release
11
US - E P R S e v e r e A c c i d e n t s M M i i t t i i g g a a t t i i o o n n
IR WST
Corium Spreading Area
E x - vessel core catcher concept (passive)
- Molten core is assumed to breach vessel
- Molten core flows into spreading area and is cooled by IRWST water
- H ydrogen recombiners ensure no detonation within container
12
EPR is bein g built now
Olkiluoto – S eptember 2009 T a ishan – S eptember 2009
Olkiluoto 3 (Finland) - construction start 2004 Flamanville 3 (France) - construction start 2007 Taishan (China) – construction start 2008
Flamanville – O ctober 2009
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .
U.S. Advanced PWR (US-APWR)
by Mitsubishi
14
US-APWR Overview
(fundamentally similar to US-EPR)
1700 MWe P WR
Typical PWR operating conditions in primary system, pressure,
temperatures , etc .
Long (14 ft.) fuel assemblies with reduced power density for 24 months operation
4 loops
High efficiency turbine (70" blades) results i n > 35% thermal e fficiency of plant
RPV with no bottom penetrations
Safety systems a re active with h igh redundancy
15
US- A PWR Safet y
HP
16
US- A PWR Safet y ( 2 )
Accumulator design with flow damper eliminates need for active high-pressure injection system
S evere acc id en t s m iti ga ti on b ase d on core - ca t c h er concep t similar to US-EPR
17
Advanced Passive 1000 (AP1000)
b y W es ti ng h ouse- T os hib a
18
AP1000 Overview
1100 MWe PWR
T yp ical PWR o p eratin g conditions, pressure, temperature, flow rates, linear power, etc.
RPV with no bottom penetrations
2 loops, 2 SGs
4 recirculation pumps (canned motor pumps, no shaft seals)
Large pressurize r
50% larger than operating plants
All safety-grade systems
are passive 19
Courtesy of Westinghouse. Used with permission.
A A P P 1 1 0 0 0 0 0 0 P P a a s s s s i i v v e e C o r e C o o l i n g S y s t e m
PRHR HX
Natural circ. heat removal
Passive Safety Injection
Core Makeup T anks (CMT)
Full press, natural circ. inject
Replaces HPCI pumps
Accumulators
Kick in at intermediate pressure
IR WST Injection
Low press (replaces LPCI pumps)
Automatic RCS Depressurization
Courtesy of Westinghouse. Used with permission.
20
A P1000 Passive Containment Coolin g S y stem
21
Courtesy of Westinghouse. Used with permission.
AP1000 Severe Accidents Mitigation
Core-Concrete Interaction
In- V essel Retention (IVR) / ex-vessel cooling
Means of cooling damaged core
T e sts and analysis of IVR reviewed by
U . S . NRC
ST E A M VE N T S
R E AC T O R VESSE L
RE A C TO R V E S S E L S U PP O R T ST E E L
High Pressure Core Melt TYP I C A L 4 PL AC ES
Eliminated by redundant, diverse ADS
Hydrogen Burn, Detonation
Hydrogen vent paths from RCS kept away from containment shell
Wa te r
CORE
4.8 m
Vessel
SHI E L D WAL L
IN S U LA T I O N
Redundant, diverse igniters
Steam Explosions
Ex-vessel prevented by IVR
Coriu m me lt
W A TE R I N LE T
22 cm W at e r
Courtesy of Westinghouse. Used with permission. 22
AP1000 videos
ECCS
http://ww w .ap1000.westinghousenucl ea r .com/ap1000_psrs_pccs.html
PCCS
http://ww w .ap1000.westinghousenucl ea r .com/ap1000_psrs_pcs.html
IVR
http://ww w .ap1000.westinghousenuclea r .com/ap1000_safety_ircd.html
AP1000 Safety Margins and Risk
T y p i cal P l an t A P 1000
• Los s F l ow M a r g in t o ~ 1 - 5% ~ 1 6% D N B R L i m i t
• F eedline Br e a k ( o F) >0 o F ~ 140 o F S u b c o o l i n g M a r g i n
• S G T u be R u pt ur e O per a t o r ac t i ons O per at or ac t i ons
r e quir ed in 10 m i n NO T re q u i r e d
• Sm a l l LO C A 3 " LO C A < 8 " LO C A
co r e u n co v e r s NO co r e
PC T ~ 1 5 0 0 o F u nc ov er y
• Lar ge LO C A P C T ( o F) 2000 - 2200 o F < 1600 o F
2.05 E- 08 / y r
5.40 E- 10 / y r
1.40 E- 08 / y r
3.50 E- 08 / y r
1.95 E- 0 8 / y r
7.10 E- 1 1 / y r
4.54 E- 0 9 / y r
2 .41 E- 0 8 / yr
1 .23 E- 0 7 / y r
3 .22 E- 0 9 / y r
8.52 E- 0 8 / y r
2 .11 E- 0 7 / y r
2.41 E- 07 / y r
8.80 E- 10 / y r
5 .61 E- 0 8 / y r
2.98 E- 07 / y r
L arge R e lease F requency
At -P ow er Shut dow n
w i th u n c e r ta i n ty (1 )
Core D a mage F requency
At - P ow er Shut do w n
24
5.92 E- 0 8
1 E- 6
5.09 E- 07
1 E- 4
I n t e rnal Ev ents I n t e rnal Fl oods I n t e rna l Fi res
Sub- T o t a l s G r an d - To tals
NR C Sa f e t y Go a l s
Courtesy of Westinghouse. Used with permission.
Use o f passive safety systems s implifies the p l a nt
S a f e t y V a l v e s P u m p s S a f e t y P i p e S e i s m i c B u i l d i n g V o l u m e C a b l e R e d u c e d N u m b e r o f C o m p o n e n t s : |
|||||
1 0 0 0 M W R e f e r e n c e |
A P 1 0 0 0 |
R e d u c t i o n |
|||
S a f e t y V a l v e s |
2 8 4 4 |
1 4 0 0 |
5 1 % |
||
P u m p s |
2 8 0 |
1 8 4 |
3 4 % |
||
S a f e t y P i p i n g |
1 1 . 0 x 1 0 4 f e e t |
1 . 9 x 1 0 4 f e e t |
8 3 % |
||
C a b l e |
9 . 1 m i l . f e e t |
1 . 2 m i l . f e e t |
8 7 % |
||
S e i s m i c B u i l d i n g V o l u m e |
1 2 . 7 m i l . f t 3 |
5 . 6 m i l . f t 3 |
5 6 % |
||
Image by MIT OpenCourseWare. 25
…an d R e d uces S a f e t y /S e i sm i c B u ildi ng V o l ume
LE G E N D :
1 . C O NTA I NM E N T/ S H I E L D B U I L DI NG
6 2 . S A F E G U A R D B U I L DI NG
3. F U E L B U I L D I N G
4 . A U X I L I A R Y B U I L DI NG
5 . DI E S E L G E N E R A TO R B U I L DI NG
6. E S S E N T IAL S E R V I C E W A T E R / CI RCU L A T I N G W A T E R P U M P H O U S E
7. L I Q U ID R A D W A S T E B U I L D I N G
2 2
2 4
5 5
2 1 2 1
4 7 3 7
3
EP R A P 1000
Sa f e t y /
Se i s m i c St r u ct u r e s
S a f et y / S ei s m i c S t r u c t u r e s
0 20 40 60 80 10 0M
Courtesy of Westinghouse. Used with permission.
26
A P1000 Construction
Simplification of Systems
Reduction in bulk materials and field labo r
Maximum Use of Modularization
300 rail-shippable equipment and piping modules
50 l arge s t ruc t ura l mo d u l es ( assem bl e d on-s it e )
- U nder construction at T a ishen (China) since 2008
- 4 P&E orders in US Courtesy of Westinghouse. Used with permission.
Advanced BWR (ABWR) and Economic Simplified B WR (ESBWR)
b y G enera l El ec t r i c- Hit ac hi
28
ABWR O verview
1350 MW e BWR
T y pical BWR operating con diti ons, pressure,
Steam dryer
temperature, linear powe r ,
Steam nozzle
etc.
Steam separator
Internal recirculation pumps
nozzle
Feedwater (no jet pumps) = no external
Fuel assem b lies
loop
Pressure vessel Large vessel with large
water inventory + no large
V e ssel support Control rod piping = no core uncovery
skirt
guide tubes
Redundant active safety
Recirculation pum p
Control rod drives systems
Proven technology (built and operated for over ten years in Japan and T a iwan) 29
Courtesy of GE Hitachi Nuclear Systems. Used with permission.
Clos u r e H ea d St e a m D r y e r
ESBWR O verview
1550 MW e BWR
T yp i ca l BWR opera ti ng
DP V / I C O u t l et
S t e a m S e par a t or s
R W CU / S DC
Out l e t
IC R e t u r n GDC S I n l e t
Su p p o r t ( s li ding blo c k )
GDC S E q u a l i z i ng L i ne I n l et
Core S h ro ud
Cont rol R od Gui d e T u b e s
I n - c or e H ou s i n g
M a in S t e a m L in e F l o w R e st ri ct o r
RP V S t a b i l i z e r
Fe ed wat e r I n l et
Ch i m n e y
C h i m n e y P arti ti on s Co r e T o p G u i de
Fu el A s s e m b li es C o r e P l a t e
S h r o ud S u p p or t
CR D H o u si n g
C o n t rol R od Dri v es ( C RD)
conditions, pressure, temperature, linear powe r , etc .
Natural circulation reactor = No reactor pumps
Large vessel with large water inventory
Core at lower elevation within vessel
All safety-grade systems are passive
ES BW R R e a ct o r
30
Courtesy of GE Hitachi Nuclear Systems. Used with permission.
BWR Primar y S y stem Evolution
D r e s d e n 1 KRB
O y s t er C r eek
Dr es d e n 2
ABWR
SBW R
ES BW R 31
Courtesy of GE Hitachi Nuclear Systems. Used with permission.
ABWR & ESBWR B alance o f P lant is T r aditional
Courtesy of GE Hitachi Nuclear Systems. Used with permission.
32
ABWR & ESBWR Parameters
Parameter |
BWR/4-Mk I (Browns Ferry 3) |
BWR/6-M k III (Grand Gulf) |
ABWR |
ESBWR |
Power (MWt/MW e ) |
3293/1098 |
3900/1360 |
3926/1350 |
4500/1550 |
V essel height/dia. (m) |
21.9 /6.4 |
21.8 /6.4 |
21.1 /7.1 |
27.7 /7.1 |
Fuel Bundles (number) |
764 |
800 |
872 |
1 132 |
Active Fuel Height (m) |
3.7 |
3 .7 |
3.7 |
3 .0 |
Power density (kW/L) |
50 |
54 . 2 |
51 |
54 |
Recirculation pumps |
2(large) |
2(large) |
10 |
zero |
Number of CRDs/type |
185/LP |
193/LP |
205/FM |
269/FM |
Safety system pumps |
9 |
9 |
1 8 |
zero |
Safety diesel generator |
2 |
3 |
3 |
zero |
Core damage freq . /yr |
1E - 5 |
1E - 6 |
1E - 7 |
1E - 7 |
Safety Bldg V o l (m 3 /MW e ) |
1 1 5 |
150 |
160 |
<100 |
33
Courtesy of GE Hitachi Nuclear Systems. Used with permission.
A BWR Safet y
Steam line
CSS
CSS
Feedwater line
HPCF
HPCF
Feedwater line
LPFL
LPFL
LPFL
Supression Pool
LPFL
LPFL
Condensate Storage Pool
Supression Pool
LPFL
SPC
Supression Pool
RHR RHR
SPC
Supression Pool
RHR
RCIC
Division 2 Division 1 Division 3
G D G D G D
Division 1 Division 2 Division 3
ECCS RHR 34
Courtesy of GE Hitachi Nuclear Systems. Used with permission.
ESBWR Enhanced Natural Circulation
AB W R BWR/6
ESBWR
4.5
ABW R L U N G MEN
CL INT O N
4.0
ESBW R 1 1 3 2 - a
Average Powe r per Bundle (M Wt)
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.0 1 .0 2. 0 3 . 0 4. 0 5 .0 6. 0 7 . 0 8 . 0 9 .0 1 0 .0
N Po w e r F l ow - 11 32 - 4 5 00. X L S C h a r t1 ( 5 )
A v er age Fl ow per Bundl e (kg/ s)
• Higher driving head
• Chimney/taller vessel
• Reduced flow restrictions
• Shorter core
• Increase downcomer area
Courtesy of GE Hitachi Nuclear Systems. Used with permission.
35
ESBWR Stabilit y
ESBWR is designed to operate with significant margin to any instability regions 36
Courtesy of GE Hitachi Nuclear Systems. Used with permission.
ESBWR Passive Safet y
37
Courtesy of GE Hitachi Nuclear Systems. Used with permission.
ESBWR Passive Safet y
Decay Heat HX’ s High Elevation
Above Drywell Gravity Drain Pools
All Pipes/V a lves Inside Containment
Raised Suppression Pool
38
Courtesy of GE Hitachi Nuclear Systems. Used with permission.
ESBWR P assive Systems
Isolation Condensers System (ICS)
High p ressure residual heat removal
Safety Relief Valves (SRV)
Prevent reactor overpressurization discharging steam into suppression poo l
Suppression Pool
Absorbs blowdown energy during LB-LOCA.
Gravity Driven Cooling System (GDCS)
Low pressure residual heat removal following LB-LOCA. Kee p s the core covered.
Passive Containment Cooling System (PCCS)
Long-term heat removal from containment
No operator action needed for 7 2 hours
39
ESBWR Severe Accident Mitigation
Containment filled with inert gas
I n-vesse l re t en ti on i s comp li ca t e d b y CRDM penetrations, so it is not done.
Q uench molten core b y delu g e from the GDCS tanks
If molten material drips through vessel, there is a sacrificial c oncrete shield (core c atcher) o n t he containment floor
Easy to refill PCCS pool and continue to remove th e h ea t f rom th e vesse l i n d e fi n it e l y
Fission Product Control
Hold up and filtering
40
Com p arison of Safet y S y stem - P assive vs. Active
DG Room Emerge n c y Initiation
Ventila tio n Bus Load in g Signa l
Sys t em Progra m
Emerge n c y Bus
Diesel Genera t o r Room 1 of 3 DG Cooling Plant
HVAC Q
Plant
DC
Pwr
ADS ADS
C r ank cas e Ventila tio n
Water Sy stem Servic e
Water
G e ner a t or
Serv ice Water Breake r Pump Motor
L o ads Log ic
Aux .
Contro l an d
Water Source Water
Engin e Govern in g Contro l
Protectio n
HVAC Q
RPV
Source
DG Lubrica t io n Diesel G e ner ator
React o r S/P
Breake r
C o mp onen t
Oil System
Starting Air
Air Intak e & Exhaust
Breaker Closes
< 10 s
Cooling Water L o ads P ump M o t or
RCCW
Core
M
DC DG Fuel
Pwr Oil System
DG Fuel Oil Storag e and
HVAC Plant Service
A
ECCS
Log ic
M
Emergency Core Wa te r C oo li ng S ys t em
Breake r Pump Motor A
Typical of HPCS,
Initiation Signa l
Transfe r System LPCS, & RHR
Conventional Active Plant
Passive Plant
41
Courtesy of GE Hitachi Nuclear Systems. Used with permission.
Reduction in Systems & Buildings with Passive Systems
ABWR ESBWR
(higher power , smaller buil d 4 i 2 ng)
Courtesy of GE Hitachi Nuclear Systems. Used with permission.
Summary Features of Advanced LWRs
Reactor |
US-EPR |
US-APWR |
A P1000 |
ABWR |
ESBWR |
||
Neutron spectrum |
Thermal |
Thermal |
Thermal |
Thermal |
Thermal |
||
Coolant/moderator |
H 2 O/H 2 O |
H 2 O/H 2 O |
H 2 O/H 2 O |
H 2 O/H 2 O |
H 2 O/H 2 O |
||
Fuel |
LEU pins |
LEU pins |
LEU pins |
LEU pins |
LEU pins |
||
Use of proven technology |
++ |
++ |
+ |
+ + |
+ |
||
Plant simplification |
+ + |
+ + |
|||||
M o d u l ar cons t ruc ti on |
+ |
+ |
|||||
Economy of scale |
++ |
++ |
+ |
+ + |
|||
High thermal ef ficiency |
+ |
+ |
|||||
Passive safety |
+ |
+ |
|||||
Miti g ation of severe accidents |
Core catcher |
Core c atcher |
In-vessel retention |
- |
C ore catcher |
||
Potential Issues for De p lo y ment of Advanced LWRs in the U.S.
• No capabilities for manufacturing heavy components left. Need to buy from overseas.
• Shortage of specialized workforce experienced in nuclear construction ( e. g . , welders ) .
• Slow licensing process
• Fi nanc i a l r i s k i n d eregu l a t e d mar k e t s
44
MIT OpenCourseWare http://ocw.mit.edu
22.06 Engineering of Nuclear Systems
Fall 20 10
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .