Heavy W ate r , Gas and Liquid Metal Cooled Reactors
Jacopo Buongiorno
Associa t e Pr of essor of Nuc l ear Science and Engineering
22.06 : Engineering of Nuclear Systems
Heavy W ater Cooled Reactors (CANDU)
Key C ANDU Features
CAN ada D euterium U ranium
D es i gne d f or natura l uran i um f ue l ( no enr i c h ment needed)
Heavy w ater (D 2 O) moderated
Pressure tube reactor (no pressure vessel) Moderator & coolant separated
Pressurized coolant and steam generators (similar to PWR)
On - power refuelling
High resource utilization (150 tons mined uranium per GW e yr, compared to 200 tons mined U per GW e yr for a t yp i ca l PWR)
Source: Jeremy Whitlock, AECL Chalk River Labs,
4/16/07
Pic ker in g , O n t a r i o Wolsong, South Korea
NPD , Ontario (1962 )
(197 1 - 7 3 , 1983 -8 6 )
( 1 9 82, 1 9 97- 99)
Douglas Point, Ontario ( 1 9 66)
Qinshan, China ( 2 0 02- 03)
Pt. Lepreau,
Ne w Bruns w i c k (1983 )
Rajas t ha n, India (197 3 , 198 2 )
Kanupp, Pakis t a n (1972 )
G entilly 1 and 2 , Q uebec
( 1 9 71, 1 9 83)
Bruce, Ontario (197 7 - 7 9 , 1985 -8 7 )
Darlington, Ontario ( 1 9 90- 93)
Cernav oda , Romania (199 6 , 200 7 , …?)
Embalse , Ar g entina ( 1984 )
20 in Canada 12 offshore
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .
CANDU STATION OVERVIEW
Power cycle s imilar t o P WR and BWR
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .
CANDU P RIMARY SYSTEM
Natural uranium fuel and D 2 O moderator
Fuel contained in individu al fuel channels (pressure tubes) filled with high pressure (>10 MPa) and high temperatur e (~300 C) D 2 O coolant
Pressure tubes contained in a large cylindrical tank (calandr ia) filled with low pressure ( < 1 MP a ) an d l ow temper atur e (<80 C) D 2 O moder ator
Fuel clad and pressure tubes are made of Zr alloys
Fuelling machines connect to individual pressure tubes for refuellin g
Conventional turbine/generator and auxiliary systems
1 M ain Steam Pipes
Heavy Water Coolan t
Feed wa t e r
Steam
2 P ressu riz e r
3 S team Gene ra to rs
4 H eat Transp o rt Pumps
5 H ead e r s
6 C alan d r ia
Heavy Water Moderat o r
7 F uel
8 M odera t o r Pumps
9 M odera t o r Heat Exchan g e rs
10 Fuelling Machines
CANDU F UEL B UNDLES
UO 2 pellets in Zircaloy cladding (0.38 mm thick)
28 or 37 pins form a fuel bundle (pins have a 13.08 mm outside diameter) Pins held together by end plates.
Pins separated by spacers. Outer pins have bearing pads. Bundle s : 495 . 3 m m l ong and 102 . 5 m m i n d iameter Average burnup : 7500-85 00 MWd/ton)
Public domain image from Wikipedia.
Image courtesy of Atomic Energy of Canada Limited.
PRESSURE TUBES (OR F UEL CHANNELS)
Each fuel channel consists of a pressure tube and two end-fittings (primary pressure boundary) , plus a calandr ia tube
Pressure tube - c alandr ia tube separated by a gas - filled annulus; gap maintained by “garter” springs
Low neutron cross section
Total c hannel length: 11 . 56 m fuelled)
( ~6 m
Calandria T ube
Fuel
Pressure T ube
.
CALANDRIA ASSEMBLY
Holds the heavy water moderator
d i l l b i i d i
Penetrated horizontally by pressure tubes, an d vert i ca ll y b y react i vi ty d ev i ces
380-480 horizontal pressure tubes
12 or 13 fuel bundle s
p er
p ressure tube
Not a pressure vessel
REPRESENTATIVE PARAMETERS FOR A DVANCED CANDU (ACR-700)
P a r a m e t e r V a l u e
T h e r m a l p o w e r ( M W t h ) |
1 9 8 0 |
G r o s s e l e c t r i c p o w e r ( n o m i n a l ) ( M W e ) |
7 3 1 |
R e a c t o r p r e s s u r e ( M P a ) |
1 2 . 6 |
N o m i n a l c o o l a n t i n l e t t e m p e r a t u r e ( o C ) |
2 7 9 |
N o m i n a l c o o l a n t o u t l e t t e m p e r a t u r e ( o C ) |
3 2 5 |
N o m i n a l m o d e r a t o r t e m p e r a t u r e ( o C ) |
7 4 |
L e n g t h o f f u e l b u n d l e ( m m ) |
4 9 5 . 3 |
C o r e l e n g t h ( m m ) |
5 9 4 0 |
N u m b e r o f b u n d l e s p e r f u e l c h a n n e l |
1 2 |
N u m b e r o f f u e l c h a n n e l s ( P r e s s u r e t u b e s ) |
2 8 4 |
P r e s s u r e t u b e i n n e r r a d i u s ( m m ) |
5 1 . 6 8 9 |
P r e s s u r e t u b e o u t e r r a d i u s ( m m ) |
5 8 . 1 6 9 |
N u m b e r o f f u e l e l e m e n t s p e r c h a n n e l P r e s s u r e t u b e l a t t i c e p i t c h ( m m )
4 3
2 2 0
Image by MIT OpenCourseWare.
Connection of CANDU Core Desi g n to Neutronics
What enables a CANDU reactor to operate with natural uranium?
What determines the pressure tube spacing?
Is the po w er densit y in a CANDU core < , = or > than a PWR? What would happen if the calandria tank were drained?
What happens to reactivity if some voiding (boiling) occurs in a CANDU pressure tube?
F U E L L I N G M A C H I N E S
Two fuelling machines operate simultaneously accepting or loading fuel
Remotely operated from control room
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .
TWO FAST - ACTING SHUTDOWN SYSTEMS
High Temperature G as Reactors (HTGR)
HTGR Overview
Small modular units: 125-300 MWe H e li um coo l e d , 8 5 0 - 900 C out l et T ,
<9 MPa pressure
Thermal efficiency >40% Gra p hite moderated Microsphere UO 2 or UCO fuel Electricity and process heat Passive decay heat removal
Two “flavors”: block core or pebble bed
15
Block Core HTGR
TRISO fuel particle
Py roly tic Carbon Sili con C ar bid e Porous Carbon Buffer UO 2 (or UCO) Kernel
TRISO Coated fuel particl es (left) are formed into cy lindrical fuel compacts (cen ter) and inserted into hexagon al graphite fuel elements (right).
TRISO P ARTICLES CYLINDR I CAL
COM P ACTS
HEXAGONAL FUEL ELEMENTS
L - 0 29( 5) 4-14 -9 4
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information,
see http://ocw.mit.edu/fairuse . 16
Fuel and core design
Block C ore H TGR ( 2)
U 17-19% enriched Requires mixed
enrichment, burnable Bl o c k 80-cm tall blocks stacked
poisons Core 10 blocks high
P a r t i c le
102 columns o f f uel
R e p l ac ea bl e c e n t r al r e f l e c t o r
1m m R e p l ac ea b l e s i d e r ef l e c t o r
P e r m an ent si de r e f l e c t o r M e t a l l i c c o r e su pp or t ( b a r r e l )
102 f f u e l co l u m n s
Co m p a c t ( 1 0 b l ock s h i gh)
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information,
see http://ocw.mit.edu/fairuse .
36 op e r at i n g co nt r o l ro d s 1 2 st a r t - u p co n t r o l r o d s
1 8 r e s e r v e s h u t d ow n c han n e l s
17
Block Core HTGR ( 3 )
Being developed by AREVA, General Atomics and Japan. E xper i ence i n US (Ft . S a i n t V ra i n ) an d J apan (HTTR)
330 MW e
Operated from 1979 to 1989 U/Th fuel
Poor performance, mechanical problems, decommissioned
40 MWth T e st Reactor at JAERI First Critical 1999
Intermediate Heat Exchanger
Currently in T e sting for Power Ascension
18
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .
Pebble B ed HTGR
F U E L E L E M EN T D E S I G N F O R P B M R
5mm Graphit e l a yer
Coat ed p a r t ic l e s im bedded i n Gr aphite M a t r ix
Dia. 60mm Py ro ly t i c C a r b on 40 / 1 0 0 0 m m
Fu e l Sphe r e
Ha l f S e ct io n
S ilic o n Ca rb it e Ba rr ie r C o at in g 35 / 1 0 0 0 m m
I n ne r Py ro l y t i c Car b on 4 0 /1 00 0m m
Po ro us Ca rb on B u f f e r 9 5 /1 00 0m m
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information,
see http://ocw.mit.edu/fairuse .
Di a. 0, 92m m
Coa t e d P a r t i c le
Di a. 0,5m m U r an ium Dioxide
Fu el 19
Pebble Bed HTGR ( 2 )
Core Height |
10.0 m |
Core Diameter |
3.5 m |
Number of Fuel Pebbles |
360,000 |
Mi crosp h eres /F ue l P e bbl e |
11 , 000 |
Fuel Pebble Diameter |
60 mm |
Microsphere Diameter |
~ 1mm |
• 400,000 pebbles in core
• O nline refueling, about 3,000 pebbles handled each day
• about 350 discarded daily
• one p ebble dischar g ed ever y 30 seconds
• a verage pebble cycles through core 6 times
• Enrichment 8 - 9 % - c onstant
- no burnable poisons
• Low excess reactivity - l ower peak operating temperatures
Pebble bed
(200 C l ower )
20
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .
P ebble Bed HTGR ( 3 )
Being developed by PBMR Ltd. and China.
Experience in Germany (AVR, THTR) and China (HTR-10)
15 MW e research reacto r UO 2 fuel
Operated for 22 years
300 MW e demo plant at Hamm-Uentrop
U/Th fuel
10 MWth - 4 MW e Electric
First c riticality D ec 1 , 2 000 Intermediate Heat Exchanger
- Steam Cycle
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .
21
Re a c to r U n i t
Com pr e s s o r s
Tu rb i n e P r e- co o l e r
Ge n
HTGR La y outs – Direct C y cle
Re a c to r U n i t
Re c u p e r a to r s
Com pr e s s o r s
Re c u p e r a to r s
Tu rb i n e
P r e- co o l e r
e r a t o r
Ge n e r a t o r
c u i t U n - c on t a m
O il L u b e S
C o n t am i n at ed
C i r c u i t Shu t -o f f D i s k O il L u b e S y s t e m
In t e r -c o o l e r
In t e r -c o o l e r
CCS & Bu f f e r C i r c u i t
CB CS & B u f f e r
CB CS & B u f f e r C i r c u i t
Shu t -o f f D i s k
i n a t e d y s t e m
CCS & Bu f f e r C i r
C o n t am i n at ed O il L u b e S y s t e m
U n - c on t a m i n a t e d O il L u b e S y s t e m
General Atomics, block cor e ,
PBMR Ltd., pebble bed cor e , horizontal turbo-generator
vertical turbo generator 22
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .
HTGR La y outs – Indirect C y cle
Re ac tor V e s s el
IHX Vessel
High P r essure Tu rbine
Re ac tor V e s s el
ARE V A , block cor e , combined cycle
RE A C T O R CAV I T Y S E C ONDAR Y
IHX Vessel
High P r essure Tu rbine
Low P r essure T u rbi n e
Compres s or ( 4 )
Power Tur b i
Low P r essure T u rbi n e
Compres s or ( 4 )
Power Tur b i n e
G A S BY PA SS
( R C C S ) T ANKS GAS TUR B I N E HEAT REC
ST EAM GE
M ODULE FUEL (H R S G )
S T OR AGE AR EA
C OOLI NG S Y STE M ( R C C S ) T ANKS
M ODULE FUEL S T OR AGE AR EA
FUEL TR ANS F E R TUNNEL
C C S HEADE RS ND S T AN DPI P ES
FUEL TR ANS F E R TUNNEL
G A S BY PA SS GAS TUR B I N E
COM P RE SS OR
HEAT REC OVER Y ST EAM GE N E R A T O R (H R S G )
R e cu pera tor V es se l
R e cu pera tor V es se l
R C C S HEADE RS A ND S T AN DPI P ES
REA C TOR
VES S EL MA
I N TER M E DI ATE C ONDENS ER A HEAT EXC H ANGE R
( I HX) C OOLI N G GEN
WATER L P T
REA C TOR VES S EL
H. P. / I . P . TUR B I N E C OND
SE CONDA R Y GAS I S OLA T I ON VALV E S
I N TER M E DI ATE HEAT EXC H ANGE R ( I HX)
SE CONDA R Y GAS I S OLA T I ON VALV E S (T Y P ICA L )
C ONDENS ER C OOLI N G WATER
H. P. / I . P . TUR B I N E
MA I N
TR
NS F O R M ER
GEN E RATOR
L . P . T U RBIN E C OND E N S ER
M I T , p e b bl e b e d c o r e , 3-shaft turbo-generator
23
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .
HTGR Safety
No fission product release from TRISO fuel at up to 1600 C
Low power density (due to use of graphite moderator) makes it possible to remove decay heat by radial conduction and radiation
In case of unprotected Loss of Coolant Accident (LOCA) with loss of on-site and off-site power (a very serious event) t here i s n o f uel melting
Concerns for air ingress (graphite “burns” at high temperature)
24
Liquid M etal (Sodium) C ooled Fast Reactors
Fast Reactors
– the concept
Fast reactor is a system in which neutrons are not moderated
The number of neutrons emitted p er neutron absorbed is hi g her for fast fissions, so the extra neutrons can be absorbed in a
U-238 blanket to produce Pu-239, thus “breeding” new fuel
If properly designed , fast reactors can actually breed more fuel than they consume (multiple fuel recycles become possible)
Needs a coolant that does not moderate neutrons, typically a liquid metal such as sodium
Interestingly, the first nuclear reactor to produce electricity was a fast reactor
EBR-I
in Idaho.
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .
Sodium-Cooled Fast Reactor ( SFR )
Characteristics
• Sodium coolant
• >500°C Outlet Temp
• 150 to 1300 MWe
• Metal or oxide fuel possible
Benefits
• Efficient fissile material generation (breeding)
• Sodium is excellent heat transfer f luid and has high boiling point (880 C)
• Relatively high temperature (good for efficiency 40%), but low pressure system (good for safety)
Drawbacks
• Sodium is reactive with air and steam, hence the intermediate loop and special fire protection measures , which add to cost and complexity
• Requires higher initial enrichment to get started (why?)
• Has positive void reactivity feedback (why?)
• Generates weapons-grade Pu (proliferation concern)
SFR Core
Uses U-238 blankets to absorb neutrons that escape from the driver fuel core region
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .
SFR F uel Assembly
Hexagonal fuel assemblies with duct
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .
SFR F uel Rod
Very tight lattice requires use of wi re wrap to keep fuel rods separated
© source unknown. All rights reserved. This content is excluded from ourCreative Commons license. For more information, see http://ocw.mit.edu/fairuse .
Re p resentative p arameters for SFR core
Fuel T ype |
Oxide |
Metal |
||||||
Assembly type |
Fuel |
Blanket |
Fuel |
Blanket |
||||
(in) |
(mm) |
(in) |
(mm) |
(in) |
(mm) |
(in) |
(mm) |
Data for GE’s SuperPRISM, 1000 MWt c ore, T in =371 C, T out =510 C
SuperPRISM Fuel and Blanket Assembly Cross-Section Dimensional Data |
||||||||||
Assembly pitch |
6.355 |
161.42 |
6.355 |
161.42 |
6.355 |
161.42 |
6.355 |
161.42 |
||
Duct gap |
0.170 |
4.32 |
0.170 |
4.32 |
0.170 |
4.32 |
0.170 |
4.32 |
||
Duct wall thickness |
0.155 |
3.94 |
0.155 |
3.94 |
0.155 |
3.94 |
0.155 |
3.94 |
||
Load pad gap |
0.010 |
0.25 |
0.010 |
0.25 |
0.010 |
0.25 |
0.010 |
0.25 |
||
Pin count |
217 |
127 |
271 |
127 |
||||||
Pin outer diameter |
0.335 |
8.51 |
0.473 |
12.01 |
0.293 |
7.44 |
0.473 |
12.01 |
||
Pin cladding wall thickness |
0.0250 |
0.635 |
0.0220 |
0.559 |
0.022 |
0.559 |
0.022 |
0.559 |
||
Fuel outer diameter |
0.2779 |
7.059 |
0.4236 |
10.759 |
0.2156 |
5.477 |
0.3955 |
10.046 |
||
Pin spacer type |
SSWW* |
SSWW* |
SSWW* |
SSWW* |
||||||
Spacer pitch |
8.0 |
203.2 |
8.0 |
203.2 |
8.0 |
203.2 |
8.0 |
203.2 |
||
Spacer wire diameter |
0.055 |
1.397 |
0.037 |
0.940 |
0.056 |
1.422 |
0.037 |
0.940 |
||
Fuel fabrication density (% of Theoretical density) |
89.4 |
95.4 |
100.0 |
100 |
||||||
Fuel smeared density (% of Theoretical density) |
85 |
93 |
75 |
85 |
||||||
V olume fractions (%, Before irradiation) Fuel Bond (Fuel-cladding annulus) Coolant Structur e |
37.63 1.95 34.57 25.85 |
51.17 1.32 26.54 20.97 |
28.30 9.43 36.57 25.70 |
44.61 7.87 26.54 20.97 |
||||||
*SSWW Straight start wire wrap |
Image by MIT OpenCourseWare.
From Dubberley e t al., Proc. of ICONE-8, Baltimore, 2000
Cost optimized MOX |
Cost optimized metal |
High breeding MOX |
High breeding Metal |
Limit |
|
Cycle average breeding ratio |
1.03 |
1.05 |
1.17 |
1.22 |
|
Cycle burnup reactivity loss (% dk/kk') |
0.98 |
0.12 |
0.81 |
-0.31 (gain) |
3.4 |
Core inventory at BOC |
|||||
Fissile PU (kg - kg/MWt) |
3469.4 - 3.47 |
2336.1 - 2.34 |
3612.2 - 3.61 |
2458.8 - 2.46 |
|
T otal TRU (kg) |
5207.7 |
3078.2 |
5341.0 |
3195.9 |
|
T otal U (kg) |
29718.5 |
23014.2 |
45939.5 |
33052.7 |
|
Feed enrichment (wt.%, T otal Pu in U-TRU) |
29.81 |
21.42 |
29.61 |
21.29 |
33 |
Supplied fissile Pu - kg/year |
41 1.20 |
366.16 |
408.40 |
363.97 |
|
- kg/GWDt |
1.32 |
1.18 |
1.32 |
1.17 |
|
Fissile Pu gain (kg/year) |
1 1.15 |
19.25 |
57.10 |
69.91 |
|
TRU consumption rate (kg/year) |
-38.60 (gain) |
-33.60 (gain) |
-85.60 (gain) |
-84.63 (gain) |
|
Cycle average spatial power peaking factor |
1.54 |
1.41 |
1.54 |
1.42 |
|
A verage linear power (kW/m, Cycle average) |
15.97 |
18.90 |
15.66 |
18.32 |
|
Peak linear power (kW/m) - Fuel |
30.14 |
30.42 |
29.65 |
29.77 |
40 |
- Internal blanket |
27.16 |
40.25 |
26.45 |
38.30 |
|
- Radial blanket |
17.76 |
30.70 |
17.33 |
29.80 |
|
Peak neutron flux (10 15 n/cm 2 -s) - T otal |
2.38 |
3.62 |
2.33 |
3.49 |
|
- Fast |
1.38 |
2.47 |
1.36 |
2.37 |
|
A verage fuel burnup (MWd/kg) Peak fuel burnup (MWd/kg) |
1 16 178 |
106 149 |
1 14 175 |
103 145 |
180 |
Peak fast fluence, fuel-blanket (10 23 n/cm 2 ) |
2.96 - 2.44 |
3.71 - 3.90 |
2.91 - 2.40 |
3.61 - 3.79 |
4.0 |
Core thermal hydraulic performance |
Good |
Good |
Good |
Good |
|
Pr essur e dr op (MPa) |
0.31 |
0.41 |
0.31 |
0.43 |
0.48 |
Maximum assembly outlet temp. (C) |
619 |
595 |
620 |
594 |
621 |
Maximum subchannel coolant temp. (C) |
678 |
648 |
679 |
648 |
887 |
Thermal striping potential (C) |
197 |
189 |
197 |
194 |
206 |
Thermal constraints satisfied GEM full-cor e str oke |
Y es Y es |
Y es Y es |
Y es Y es |
Y es Y es |
|
Peak fuel pin steady state performance (HT9M) |
Good |
Good |
Good |
Good |
|
Maximum cr eep ruptur e damage fraction Maximum total diametrial gr owth (%) Maximum thermal cr eep strain (%) Minimum power to melt at centerline (%) |
0.0026 0.69 0.37 150 |
0.00003 0.42 0.07 138 |
0.0023 0.76 0.37 150 |
0.00006 0.49 0.08 133 |
0.2 2.0 1.0 |
Maximum power to melt at surface (%) |
1 13 |
1 13 |
|||
Duct structural performance (HT9) Maximum radial gr owth (mm) |
Good 1.7 |
Acceptable 2.3 |
Good 1.2 |
Acceptable 2.2 |
2.2 (Cons) 3.2 (Exp) |
Re p resentative p arameters for SFR core ( 2 )
Driver fuel |
162 |
Internal blanket |
73 |
Radial blanket |
60 |
Primary control |
9 |
Secondary control |
3 |
Gas expansion module |
18 |
Reflector |
138 |
Shield T otal |
78 |
541 |
Driver fuel |
138 |
Internal blanket |
49 |
Radial blanket |
48 |
Primary control |
9 |
Secondary control |
3 |
Gas expansion module |
6 |
Reflector |
126 |
Shield T otal |
72 |
451 |
SuperPRISM oxide cor e configuration
SuperPRISM metal cor e configuration
Image by MIT OpenCourseWare.
Image by MIT OpenCourseWare.
From Dubberley et al., Proc. of ICONE-8, Baltimore, 2000.
MIT OpenCourseWare http://ocw.mit.edu
22.06 Engineering of Nuclear Systems
Fall 20 10
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .