Heavy W ate r , Gas and Liquid Metal Cooled Reactors

Jacopo Buongiorno

Associa t e Pr of essor of Nuc l ear Science and Engineering

22.06 : Engineering of Nuclear Systems

Heavy W ater Cooled Reactors (CANDU)

Key C ANDU Features

CAN ada D euterium U ranium

D es i gne d f or natura l uran i um f ue l ( no enr i c h ment needed)

Heavy w ater (D 2 O) moderated

Pressure tube reactor (no pressure vessel) Moderator & coolant separated

Pressurized coolant and steam generators (similar to PWR)

On - power refuelling

High resource utilization (150 tons mined uranium per GW e yr, compared to 200 tons mined U per GW e yr for a t yp i ca l PWR)

Source: Jeremy Whitlock, AECL Chalk River Labs,

4/16/07

Pic ker in g , O n t a r i o Wolsong, South Korea

NPD , Ontario (1962 )

(197 1 - 7 3 , 1983 -8 6 )

( 1 9 82, 1 9 97- 99)

Douglas Point, Ontario ( 1 9 66)

Qinshan, China ( 2 0 02- 03)

Pt. Lepreau,

Ne w Bruns w i c k (1983 )

Rajas t ha n, India (197 3 , 198 2 )

Kanupp, Pakis t a n (1972 )

G entilly 1 and 2 , Q uebec

( 1 9 71, 1 9 83)

Bruce, Ontario (197 7 - 7 9 , 1985 -8 7 )

Darlington, Ontario ( 1 9 90- 93)

Cernav oda , Romania (199 6 , 200 7 , …?)

Embalse , Ar g entina ( 1984 )

20 in Canada 12 offshore

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .

CANDU STATION OVERVIEW

Power cycle s imilar t o P WR and BWR

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .

CANDU P RIMARY SYSTEM

Natural uranium fuel and D 2 O moderator

Fuel contained in individu al fuel channels (pressure tubes) filled with high pressure (>10 MPa) and high temperatur e (~300 C) D 2 O coolant

Pressure tubes contained in a large cylindrical tank (calandr ia) filled with low pressure ( < 1 MP a ) an d l ow temper atur e (<80 C) D 2 O moder ator

Fuel clad and pressure tubes are made of Zr alloys

Fuelling machines connect to individual pressure tubes for refuellin g

Conventional turbine/generator and auxiliary systems

1 M ain Steam Pipes

Heavy Water Coolan t

Feed wa t e r

Steam

2 P ressu riz e r

3 S team Gene ra to rs

4 H eat Transp o rt Pumps

5 H ead e r s

6 C alan d r ia

Heavy Water Moderat o r

7 F uel

8 M odera t o r Pumps

9 M odera t o r Heat Exchan g e rs

10 Fuelling Machines

CANDU F UEL B UNDLES

UO 2 pellets in Zircaloy cladding (0.38 mm thick)

28 or 37 pins form a fuel bundle (pins have a 13.08 mm outside diameter) Pins held together by end plates.

Pins separated by spacers. Outer pins have bearing pads. Bundle s : 495 . 3 m m l ong and 102 . 5 m m i n d iameter Average burnup : 7500-85 00 MWd/ton)

Public domain image from Wikipedia.

Image courtesy of Atomic Energy of Canada Limited.

PRESSURE TUBES (OR F UEL CHANNELS)

Each fuel channel consists of a pressure tube and two end-fittings (primary pressure boundary) , plus a calandr ia tube

Pressure tube - c alandr ia tube separated by a gas - filled annulus; gap maintained by “garter” springs

Low neutron cross section

Total c hannel length: 11 . 56 m fuelled)

( ~6 m

Calandria T ube

Fuel

Pressure T ube

.

CALANDRIA ASSEMBLY

Holds the heavy water moderator

d i l l b i i d i

Penetrated horizontally by pressure tubes, an d vert i ca ll y b y react i vi ty d ev i ces

380-480 horizontal pressure tubes

12 or 13 fuel bundle s

p er

p ressure tube

Not a pressure vessel

REPRESENTATIVE PARAMETERS FOR A DVANCED CANDU (ACR-700)

P a r a m e t e r V a l u e

T h e r m a l p o w e r ( M W t h )

1 9 8 0

G r o s s e l e c t r i c p o w e r ( n o m i n a l ) ( M W e )

7 3 1

R e a c t o r p r e s s u r e ( M P a )

1 2 . 6

N o m i n a l c o o l a n t i n l e t t e m p e r a t u r e ( o C )

2 7 9

N o m i n a l c o o l a n t o u t l e t t e m p e r a t u r e ( o C )

3 2 5

N o m i n a l m o d e r a t o r t e m p e r a t u r e ( o C )

7 4

L e n g t h o f f u e l b u n d l e ( m m )

4 9 5 . 3

C o r e l e n g t h ( m m )

5 9 4 0

N u m b e r o f b u n d l e s p e r f u e l c h a n n e l

1 2

N u m b e r o f f u e l c h a n n e l s ( P r e s s u r e t u b e s )

2 8 4

P r e s s u r e t u b e i n n e r r a d i u s ( m m )

5 1 . 6 8 9

P r e s s u r e t u b e o u t e r r a d i u s ( m m )

5 8 . 1 6 9

N u m b e r o f f u e l e l e m e n t s p e r c h a n n e l P r e s s u r e t u b e l a t t i c e p i t c h ( m m )

4 3

2 2 0

Image by MIT OpenCourseWare.

Connection of CANDU Core Desi g n to Neutronics

What enables a CANDU reactor to operate with natural uranium?

What determines the pressure tube spacing?

Is the po w er densit y in a CANDU core < , = or > than a PWR? What would happen if the calandria tank were drained?

What happens to reactivity if some voiding (boiling) occurs in a CANDU pressure tube?

F U E L L I N G M A C H I N E S

Two fuelling machines operate simultaneously accepting or loading fuel

Remotely operated from control room

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .

TWO FAST - ACTING SHUTDOWN SYSTEMS

High Temperature G as Reactors (HTGR)

HTGR Overview

Small modular units: 125-300 MWe H e li um coo l e d , 8 5 0 - 900 C out l et T ,

<9 MPa pressure

Thermal efficiency >40% Gra p hite moderated Microsphere UO 2 or UCO fuel Electricity and process heat Passive decay heat removal

Two “flavors”: block core or pebble bed

15

Block Core HTGR

TRISO fuel particle

Py roly tic Carbon Sili con C ar bid e Porous Carbon Buffer UO 2 (or UCO) Kernel

TRISO Coated fuel particl es (left) are formed into cy lindrical fuel compacts (cen ter) and inserted into hexagon al graphite fuel elements (right).

TRISO P ARTICLES CYLINDR I CAL

COM P ACTS

HEXAGONAL FUEL ELEMENTS

L - 0 29( 5) 4-14 -9 4

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information,

see http://ocw.mit.edu/fairuse . 16

Fuel and core design

Block C ore H TGR ( 2)

U 17-19% enriched Requires mixed

enrichment, burnable Bl o c k 80-cm tall blocks stacked

poisons Core 10 blocks high

P a r t i c le

102 columns o f f uel

R e p l ac ea bl e c e n t r al r e f l e c t o r

1m m R e p l ac ea b l e s i d e r ef l e c t o r

P e r m an ent si de r e f l e c t o r M e t a l l i c c o r e su pp or t ( b a r r e l )

102 f f u e l co l u m n s

Co m p a c t ( 1 0 b l ock s h i gh)

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information,

see http://ocw.mit.edu/fairuse .

36 op e r at i n g co nt r o l ro d s 1 2 st a r t - u p co n t r o l r o d s

1 8 r e s e r v e s h u t d ow n c han n e l s

17

Block Core HTGR ( 3 )

Being developed by AREVA, General Atomics and Japan. E xper i ence i n US (Ft . S a i n t V ra i n ) an d J apan (HTTR)

330 MW e

Operated from 1979 to 1989 U/Th fuel

Poor performance, mechanical problems, decommissioned

40 MWth T e st Reactor at JAERI First Critical 1999

Intermediate Heat Exchanger

Currently in T e sting for Power Ascension

18

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .

Pebble B ed HTGR

F U E L E L E M EN T D E S I G N F O R P B M R

5mm Graphit e l a yer

Coat ed p a r t ic l e s im bedded i n Gr aphite M a t r ix

Dia. 60mm Py ro ly t i c C a r b on 40 / 1 0 0 0 m m

Fu e l Sphe r e

Ha l f S e ct io n

S ilic o n Ca rb it e Ba rr ie r C o at in g 35 / 1 0 0 0 m m

I n ne r Py ro l y t i c Car b on 4 0 /1 00 0m m

Po ro us Ca rb on B u f f e r 9 5 /1 00 0m m

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information,

see http://ocw.mit.edu/fairuse .

Di a. 0, 92m m

Coa t e d P a r t i c le

Di a. 0,5m m U r an ium Dioxide

Fu el 19

Pebble Bed HTGR ( 2 )

Core Height

10.0 m

Core Diameter

3.5 m

Number of Fuel Pebbles

360,000

Mi crosp h eres /F ue l P e bbl e

11 , 000

Fuel Pebble Diameter

60 mm

Microsphere Diameter

~ 1mm

400,000 pebbles in core

O nline refueling, about 3,000 pebbles handled each day

about 350 discarded daily

one p ebble dischar g ed ever y 30 seconds

a verage pebble cycles through core 6 times

Enrichment 8 - 9 % - c onstant

- no burnable poisons

Low excess reactivity - l ower peak operating temperatures

Pebble bed

(200 C l ower )

20

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .

P ebble Bed HTGR ( 3 )

Being developed by PBMR Ltd. and China.

Experience in Germany (AVR, THTR) and China (HTR-10)

15 MW e research reacto r UO 2 fuel

Operated for 22 years

300 MW e demo plant at Hamm-Uentrop

U/Th fuel

10 MWth - 4 MW e Electric

First c riticality D ec 1 , 2 000 Intermediate Heat Exchanger

- Steam Cycle

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .

21

Re a c to r U n i t

Com pr e s s o r s

Tu rb i n e P r e- co o l e r

Ge n

HTGR La y outs Direct C y cle

Re a c to r U n i t

Re c u p e r a to r s

Com pr e s s o r s

Re c u p e r a to r s

Tu rb i n e

P r e- co o l e r

e r a t o r

Ge n e r a t o r

c u i t U n - c on t a m

O il L u b e S

C o n t am i n at ed

C i r c u i t Shu t -o f f D i s k O il L u b e S y s t e m

In t e r -c o o l e r

In t e r -c o o l e r

CCS & Bu f f e r C i r c u i t

CB CS & B u f f e r

CB CS & B u f f e r C i r c u i t

Shu t -o f f D i s k

i n a t e d y s t e m

CCS & Bu f f e r C i r

C o n t am i n at ed O il L u b e S y s t e m

U n - c on t a m i n a t e d O il L u b e S y s t e m

General Atomics, block cor e ,

PBMR Ltd., pebble bed cor e , horizontal turbo-generator

vertical turbo generator 22

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .

HTGR La y outs Indirect C y cle

Re ac tor V e s s el

IHX Vessel

High P r essure Tu rbine

Re ac tor V e s s el

ARE V A , block cor e , combined cycle

RE A C T O R CAV I T Y S E C ONDAR Y

IHX Vessel

High P r essure Tu rbine

Low P r essure T u rbi n e

Compres s or ( 4 )

Power Tur b i

Low P r essure T u rbi n e

Compres s or ( 4 )

Power Tur b i n e

G A S BY PA SS

( R C C S ) T ANKS GAS TUR B I N E HEAT REC

ST EAM GE

M ODULE FUEL (H R S G )

S T OR AGE AR EA

C OOLI NG S Y STE M ( R C C S ) T ANKS

M ODULE FUEL S T OR AGE AR EA

FUEL TR ANS F E R TUNNEL

C C S HEADE RS ND S T AN DPI P ES

FUEL TR ANS F E R TUNNEL

G A S BY PA SS GAS TUR B I N E

COM P RE SS OR

HEAT REC OVER Y ST EAM GE N E R A T O R (H R S G )

R e cu pera tor V es se l

R e cu pera tor V es se l

R C C S HEADE RS A ND S T AN DPI P ES

REA C TOR

VES S EL MA

I N TER M E DI ATE C ONDENS ER A HEAT EXC H ANGE R

( I HX) C OOLI N G GEN

WATER L P T

REA C TOR VES S EL

H. P. / I . P . TUR B I N E C OND

SE CONDA R Y GAS I S OLA T I ON VALV E S

I N TER M E DI ATE HEAT EXC H ANGE R ( I HX)

SE CONDA R Y GAS I S OLA T I ON VALV E S (T Y P ICA L )

C ONDENS ER C OOLI N G WATER

H. P. / I . P . TUR B I N E

MA I N

TR

NS F O R M ER

GEN E RATOR

L . P . T U RBIN E C OND E N S ER

M I T , p e b bl e b e d c o r e , 3-shaft turbo-generator

23

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .

HTGR Safety

No fission product release from TRISO fuel at up to 1600 C

Low power density (due to use of graphite moderator) makes it possible to remove decay heat by radial conduction and radiation

In case of unprotected Loss of Coolant Accident (LOCA) with loss of on-site and off-site power (a very serious event) t here i s n o f uel melting

Concerns for air ingress (graphite “burns” at high temperature)

24

Liquid M etal (Sodium) C ooled Fast Reactors

Fast Reactors

the concept

Fast reactor is a system in which neutrons are not moderated

The number of neutrons emitted p er neutron absorbed is hi g her for fast fissions, so the extra neutrons can be absorbed in a

U-238 blanket to produce Pu-239, thus “breeding” new fuel

If properly designed , fast reactors can actually breed more fuel than they consume (multiple fuel recycles become possible)

Needs a coolant that does not moderate neutrons, typically a liquid metal such as sodium

Interestingly, the first nuclear reactor to produce electricity was a fast reactor

EBR-I

in Idaho.

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .

Sodium-Cooled Fast Reactor ( SFR )

Characteristics

Sodium coolant

>500°C Outlet Temp

150 to 1300 MWe

Metal or oxide fuel possible

Benefits

Efficient fissile material generation (breeding)

Sodium is excellent heat transfer f luid and has high boiling point (880 C)

Relatively high temperature (good for efficiency 40%), but low pressure system (good for safety)

Drawbacks

Sodium is reactive with air and steam, hence the intermediate loop and special fire protection measures , which add to cost and complexity

Requires higher initial enrichment to get started (why?)

Has positive void reactivity feedback (why?)

Generates weapons-grade Pu (proliferation concern)

SFR Core

Uses U-238 blankets to absorb neutrons that escape from the driver fuel core region

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .

SFR F uel Assembly

Hexagonal fuel assemblies with duct

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .

SFR F uel Rod

Very tight lattice requires use of wi re wrap to keep fuel rods separated

© source unknown. All rights reserved. This content is excluded from ourCreative Commons license. For more information, see http://ocw.mit.edu/fairuse .

Re p resentative p arameters for SFR core

Fuel T ype

Oxide

Metal

Assembly type

Fuel

Blanket

Fuel

Blanket

(in)

(mm)

(in)

(mm)

(in)

(mm)

(in)

(mm)

Data for GE’s SuperPRISM, 1000 MWt c ore, T in =371 C, T out =510 C

SuperPRISM Fuel and Blanket Assembly Cross-Section Dimensional Data

Assembly pitch

6.355

161.42

6.355

161.42

6.355

161.42

6.355

161.42

Duct gap

0.170

4.32

0.170

4.32

0.170

4.32

0.170

4.32

Duct wall thickness

0.155

3.94

0.155

3.94

0.155

3.94

0.155

3.94

Load pad gap

0.010

0.25

0.010

0.25

0.010

0.25

0.010

0.25

Pin count

217

127

271

127

Pin outer diameter

0.335

8.51

0.473

12.01

0.293

7.44

0.473

12.01

Pin cladding wall thickness

0.0250

0.635

0.0220

0.559

0.022

0.559

0.022

0.559

Fuel outer diameter

0.2779

7.059

0.4236

10.759

0.2156

5.477

0.3955

10.046

Pin spacer type

SSWW*

SSWW*

SSWW*

SSWW*

Spacer pitch

8.0

203.2

8.0

203.2

8.0

203.2

8.0

203.2

Spacer wire diameter

0.055

1.397

0.037

0.940

0.056

1.422

0.037

0.940

Fuel fabrication density (% of Theoretical density)

89.4

95.4

100.0

100

Fuel smeared density (% of Theoretical density)

85

93

75

85

V olume fractions (%, Before irradiation)

Fuel

Bond (Fuel-cladding annulus) Coolant

Structur e

37.63

1.95

34.57

25.85

51.17

1.32

26.54

20.97

28.30

9.43

36.57

25.70

44.61

7.87

26.54

20.97

*SSWW Straight start wire wrap

Image by MIT OpenCourseWare.

From Dubberley e t al., Proc. of ICONE-8, Baltimore, 2000

Cost optimized MOX

Cost optimized metal

High breeding MOX

High breeding Metal

Limit

Cycle average breeding ratio

1.03

1.05

1.17

1.22

Cycle burnup reactivity loss (% dk/kk')

0.98

0.12

0.81

-0.31 (gain)

3.4

Core inventory at BOC

Fissile PU (kg - kg/MWt)

3469.4 - 3.47

2336.1 - 2.34

3612.2 - 3.61

2458.8 - 2.46

T otal TRU (kg)

5207.7

3078.2

5341.0

3195.9

T otal U (kg)

29718.5

23014.2

45939.5

33052.7

Feed enrichment (wt.%, T otal Pu in U-TRU)

29.81

21.42

29.61

21.29

33

Supplied fissile Pu - kg/year

41 1.20

366.16

408.40

363.97

- kg/GWDt

1.32

1.18

1.32

1.17

Fissile Pu gain (kg/year)

1 1.15

19.25

57.10

69.91

TRU consumption rate (kg/year)

-38.60 (gain)

-33.60 (gain)

-85.60 (gain)

-84.63 (gain)

Cycle average spatial power peaking factor

1.54

1.41

1.54

1.42

A verage linear power (kW/m, Cycle average)

15.97

18.90

15.66

18.32

Peak linear power (kW/m) - Fuel

30.14

30.42

29.65

29.77

40

- Internal blanket

27.16

40.25

26.45

38.30

- Radial blanket

17.76

30.70

17.33

29.80

Peak neutron flux (10 15 n/cm 2 -s) - T otal

2.38

3.62

2.33

3.49

- Fast

1.38

2.47

1.36

2.37

A verage fuel burnup (MWd/kg) Peak fuel burnup (MWd/kg)

1 16

178

106

149

1 14

175

103

145

180

Peak fast fluence, fuel-blanket (10 23 n/cm 2 )

2.96 - 2.44

3.71 - 3.90

2.91 - 2.40

3.61 - 3.79

4.0

Core thermal hydraulic performance

Good

Good

Good

Good

Pr essur e dr op (MPa)

0.31

0.41

0.31

0.43

0.48

Maximum assembly outlet temp. (C)

619

595

620

594

621

Maximum subchannel coolant temp. (C)

678

648

679

648

887

Thermal striping potential (C)

197

189

197

194

206

Thermal constraints satisfied GEM full-cor e str oke

Y es Y es

Y es Y es

Y es Y es

Y es Y es

Peak fuel pin steady state performance (HT9M)

Good

Good

Good

Good

Maximum cr eep ruptur e damage fraction Maximum total diametrial gr owth (%) Maximum thermal cr eep strain (%)

Minimum power to melt at centerline (%)

0.0026

0.69

0.37

150

0.00003

0.42

0.07

138

0.0023

0.76

0.37

150

0.00006

0.49

0.08

133

0.2

2.0

1.0

Maximum power to melt at surface (%)

1 13

1 13

Duct structural performance (HT9)

Maximum radial gr owth (mm)

Good 1.7

Acceptable 2.3

Good 1.2

Acceptable 2.2

2.2 (Cons)

3.2 (Exp)

Re p resentative p arameters for SFR core ( 2 )

Driver fuel

162

Internal blanket

73

Radial blanket

60

Primary control

9

Secondary control

3

Gas expansion module

18

Reflector

138

Shield

T otal

78

541

Driver fuel

138

Internal blanket

49

Radial blanket

48

Primary control

9

Secondary control

3

Gas expansion module

6

Reflector

126

Shield

T otal

72

451

SuperPRISM oxide cor e configuration

SuperPRISM metal cor e configuration

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.

From Dubberley et al., Proc. of ICONE-8, Baltimore, 2000.

MIT OpenCourseWare http://ocw.mit.edu

22.06 Engineering of Nuclear Systems

Fall 20 10

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .