BWR Description

Jacopo Buongiorno

Associa t e Pr of essor of Nuc l ear Science and Engineering

22.06 : Engineering of Nuclear Systems

Boiling Water Reactor (BWR)

Public domain image by US NRC.

The B WR is a D irect C ycle Plant

S ys t em pressure, MP a

7 . 136

3 4

Therm al ef ficiency , %

1 130

Electric power , M W e

3323

Core therm a l power , MW th

V essel I D / Thickness / Hei g ht , m

6.4 / 0.16 / 22

Core

Steam line Reactor vessel

Separators & dryers

Feedwater

Heater

T urbine generator

220

Feedwater tem p erature, ºC

1820

Feedwater flow rate, kg/s

13.1

Core exit quality , %

287.2

Core outlet tem p erature, ºC

278.3

Core inlet tem p erature, ºC

13702

Core m a ss flow rate, kg/s

764

Num b er of fuel assem b lies

5.2

Core shroud diam et er , m

Condensate

14 %

Core flow bypass

50.5

Core power density , kW /L

287.2

Steam tem p eratur e, ºC

Feed pumps

pumps

1820

St eam fl ow ra t e, k g / s

Recirculatio n pumps

Demineralizer

Image by MIT OpenCourseWare.

A .V. Ne r o, J r ., A Gui d ebook to Nuclea r R eacto r s , 1 979

Phase D iagram of Water

Pressure

Saturation line

7 . 3

Liquid

BWR core

V apor

278 288 T emperature [ C]

BWR Core

BWR C ore Layout

Fuel B undle Contr ol Ce ll Bundle Peri phe ral Bun dle Contr ol B lade

270° 90°

180 °

T y pical Control Cell Core Layout

© source unknown All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

BWR Fuel Assembly

Upper Tie Plate

Channel Fastener Assembly

Fuel Cladding

Fuel Claddding

Expansion

Spring

Fuel Channel

Lower Tie Plate

Plenum Spring

Fuel Pellet

Nose Piece Fuel Rod

Image by MIT OpenCourseWare. © source unknown All rights reserved. This content is excluded from our

F l bli h d t ll t

P07.cvs

Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Diagram of a BWR Fuel Assembly.

Single bundle 3D view

F ue l assem bli es h ave a d uc t wa ll t o prevent vapor radial drifting

BWR Fuel Assemblies

Image by MIT OpenCourseWare.

Fuel Assembly Parameters for 9x9 Fuel Assembly

P a ra met er

Valu e

Fuel P e ll et OD (mm)

9.55

F u el Pin OD ( m m)

11.18

C l ad Thi c kness (mm)

0.71

F uel Pin Pitc h ( m m)

14.27

Ac tive F u e l r od he i g ht ( mm)

3707.9

Tota l F ue l Rod hei g ht ( m m)

4178.7

Part L e n g th Rod He ig ht ( mm)

2436

Fu el P i n s / W a t e r R o ds p er Fu el Assembl y

74/2

Numbe r of Par t L e n g th R o ds

8

I nn e r/Oute r di amete r o f the water r ods (mm)

23.37 /24.89

Duct Thi c kness (mm)

2.54

C lea ranc e be tween duct and periphe r a l fue l r ods (mm)

3.53

C l earanc e bet w een w a t er rods and fuel rods ( mm )

1.79

Assembl y Oute r Dime nsi o n (mm)

137.54

I n ter - A s s e mbly Ga p (mm)

14.8 6

Average L inea r Power (k W /m)

16.46

Pre s sur e D r o p (kPa )

160

Average e nri c hment ( wt %)

4.31

Average Discha rg e B ur n up ( G W d/t)

56

R e fue l ing s c heme

4 ba tc hes

Numbe r of r ods with g a d olinia

8

Ga dolinia conc entra t ion ( w t%)

5

H y d r o g en to He av y M eta l R a t i o

4 . 5 3

Void Coe f f i cient (p c m /% void)

- 144

Fuel Tempe r at ur e Coef fi cient (pcm /K)

-1.7

Approx ima t e Asse mbl y W e ig ht ( k g )

281

Diagram showing parts of a control blade.

Control Blade

Image removed due to copyright restrictions.

Image by MIT OpenCourseWare.

BWR C ontrol Rod D rive System

Image by MIT OpenCourseWare.

BWR SPATIAL CORE PROPERTIES

(WITH CONTROL RODS PARTIALLY INSERTED)

Relative power

A verage void fraction

Critical heat flux ratio in hot channel x0.1

1.5

Relative parameters

1.0

0.5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Bottom of core

Relative axial length

T op of core

Image by MIT OpenCourseWare.

1.8

1.6

1.4

1.2

0

17 25 33

42

50

58

67

Perc ent Ful l Inse rtion

0

67

1.0

.8

.6

.4

No da l po wer no rma lize d to 1. 0 ov er the core .

.2

(Bottom)

Axial Length of Fuel

(T op)

Relative Power

POWER IN FRESH FUEL ASSEMB L Y AS ADJACENT CO NTR O L R O D I S WITHDR A WN T O W A RD B O TT O M

Image by MIT OpenCourseWare.

BW R/6 : Gen eral D escrip tio n o f a BW R, GE, 1980.

Connection of BWR Core Desi g n to Neutronics

Why are the fuel rods spaced out more in a BWR than in a PWR? Why is the core power density lower in a BWR core than in a PWR?

What is the purpose of spatial fuel enrichment zoning throughout a BWR fuel assembly?

What function do the water rods perform?

W hy are t h e BWR contro l ro d s i nserte d f rom t h e b ottom o f t h e core?

Can dissolved boron be used as a means to control reactivity in a BWR core?

BWR Bundle D esign Advances

Extended burnup features

More fuel p ins ( 10 10 ) for a lower

heat flux

Heavier fuel loadings

Improved mechanical performance

“Barrier” cladding

Low growth, wear resistant materials

I m p r o v e d o p e r a t i o n a l p e r f o r m a n c e

Natural uranium blankets

Flow mixing grids to enhance margin to critical power

Part-Length Fuel Rods (Stability, SDM)

Large Central Water Channels ( Stabilit y , SDM )

Sophisticated poison & enrichment zoning

© source unknown All rights reserved. This content is excluded from

our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse .

Control Rod

Fuel Rod

Part Length Fuel Rod

Image by MIT OpenCourseWare .

BWR Vessel and Vessel Internals

BWR Vessel

Lar ge vessel made of ring for gings to avoid welds in the core region

V e ssel bottom head accommodates CR penetrations

ABWR RPV beltline forging, w e ight: 127 tons; dimensions:

From : L.E. Fennern, ABW R Sem i nar R eactor, 7.48 m outside diamete r , 7.12 m in side diamete r , 3.96 m high;

C o re & Neut roni cs. Apri l 13, 2007. material: ASME SA 508, Class 3 EQ.

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fair use .

BWR Vessel Internals

From : V. Shah, P. M acDonal d , Agi ng and Li fe Ext e nsi on of M a jor LW R C o m ponent s, 1993.

Steam Separators

Stea m Do m e

Dr y er Heig h t

Steam Dryers

Drain P ip e s Stea m + Dropl

ets

From : V. Shah, P. M acDonal d , Agi ng and Li fe Ext e nsi on of M a jor LW R C o m ponent s, 1993.

BWR Recirculation System

BWR R ecirculation System

BWR/6 ABWR ESBWR

Steam Dryers Steam Separators

Drivin g Fl o w

Steam Flow to T urbine

Feed Flow from Condenser

Core

Jet Pump

Recirculation Pump

External recirculati on

T en internal Relies on natural

pumps + jet pumps recirculation pumps circulation

Courtesy of GE Hitachi Nuclear Systems. Used with permission.

Traditional BWR vs ABWR and ESBWR

Parameter

BWR/4-Mk I

(Browns Ferry 3)

BWR/6-Mk III

(Grand Gulf)

ABWR

ESBWR

Power (MWt/M W e)

3293/1098

3900/1360

3926/1350

4500/1550

V essel height/dia. (m)

21.9 /6.4

21.8 /6.4

21.1 /7.1

27.7 /7.1

Fuel bundles (number)

764

800

872

1 132

Active fuel height (m)

3.7

3.7

3.7

3.0

Power density (kW/L)

50

54.2

51

54

Recirculation pumps

2(lar ge)

2(lar ge)

10

Zero

Number of CRDs/type

185/LP

193/LP

205/FM

269/FM

Safety system pumps

9

9

18

Zero

Safety diesel generator

2

3

3

Zero

Core damage freq./yr

1E-5

1E-6

1E-7

1E-7

Safety Bldg V ol (m 3 /M W e)

1 15

150

160

<100

Image by MIT OpenCourseWare.

BWR/6 R ecirculation Flow

Steam Dryers

1 unit

Steam Flow

to Turbine 1 unit

Steam Separators

Driving Flow

5 units

Feed Flow

from Turbine 1 unit

Core

4 units

Jet Pump

Recirculation Pump

6 units

2 units

Jet Pump M-Ratio

= Suction F low / Drive F low = 2

Courtesy of GE Hitachi Nuclear Systems. Used with permission.

BWR R ecirculation Pumps

Image removed due to copyright restrictions.

© Elsevier. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

BWR Jet Pumps

H o l d d o wn As s e m b l y

In l e t

Je t P u m p N o z z l e As s e m b l y

R e st r a i n e rs a n d S up po r t s

C o re S h ro u d Mi x e r

R e st r a i n e rs a n d Su pp or t s

In l e t R i s e r

R e ac t o r V es s el W al l C o r e S u pp or t

D i ffu s e r a n d T a i l P i p e R e ci r cu l at i o n I n l e t

No z z l e 1 p e r J e t Pum p R i s e r

© Elsevier. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

BWR Balance Of Plant (BOP)

BWR Power C y cle

Reactor Vessel

Steam

Separators and Dryers

Feedwater Extraction Steam

Turbine

Moisture Separator and Reheater

HP LP LP

Condenser

Generator

Core

Recirc Pum p

Recirc Pum p

Feed Pumps

Extraction Steam

Demineralizers

Heaters

Drain Pumps

H eate r s

Condensate Pumps

Courtesy of GE Hitachi Nuclear Systems. Used with permission.

“B W R /6 , Ge n e r a l D esc ri pt i o n o f a B W R , G E , 1 980

Radioactive Steam

Entire Power Conversion System becomes Radioactive

Shi e ldi ng i s N ee d e d

Reaction products from water:

O 16 + n N 16 + H 1 , T 1/2 = 7.2 s; , O 17 + n N 17 + H 1 , T 1/2 = 4.2 s; , O 18 + n O 19 F 19 , T 1/2 = 29 s; ,

Activation of corrosion p roducts:

Fe 54 + n Fe 55 , T 1/2 = 2.7 y;

Fe 58 + n Fe 59 , T 1/2 = 44.6 d; ,

Co 59 + n Co 60 , T 1/2 = 5.3 y; ,

Ni 58 + n Ni 59 , T 1/2 = 8x10 4 y; ,

Ni 62 + n Ni 63 , T 1/2 = 100 y; ,

Air E j ector

Removes An y Gases in Coolant Downstream of Condenser They Must be Held Up and Stabilized

Nobel Gas Fission Products Escaped from Faulty Fuel Pins (Xe, Kr isotopes)

Xe 135 Cs 135 + b - + g, T 1/2 = 9.2 h

Kr 88 Rb 88 + b - + g, T 1/2 = 2.8 h Kr 85 Rb 85 + b -1 + g, T 1/2 = 10.7 y

H 2 from Radiolysis of H 2 O

N Isotopes Produced by (O + n) Reactions Gases Leaking into C ondenser

BWR safety systems and containment to be discussed later in the course

MIT OpenCourseWare http://ocw.mit.edu

22.06 Engineering of Nuclear Systems

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .