Rad i at i o n Basi cs
C o okie pho to : Public domain .
22. S 902 – D I Y G eiger C ount ers P rof . M ic hael S hort
Y ou hav e f our highly radioac t iv e c ook ies :
α β γ n
Y ou m us t :
P ut one in your pocket H old one in your hand E at one G ive one t o a “f riend”
O ld 2 2.01 Fi nal Exam Quest i o n
W hat do y ou do?
M o t i vat i o n
I nt roduc e ioniz ing radiat ion bas ic s
E s t ablis h c om m on not at ion and t erm inology
U nders t and t y pes of radiat ion
I nt uit iv ely unders t and range of radiat ion
D eriv e and us e nuc lear reac t ion equat ions , half liv es of c om m on is ot opes
T y p es o f Io ni zi ng Rad i at i o n
A lpha ( α) – Heliu m nucleu s +2
– H eav y , c harged
± 1
B eta ( β ) – A fr ee electr o n or positr on
– Li ght, c harged
Gam m a ( γ) – A nuclea r ph o ton ( l ight )
– N o mas s , no c harge
Neutr on ( n ) – A fr ee neutr on
– H eav y , no c harge
Rang es o f Io ni zi ng Rad i at i o n
P aper
Plastic
Steel
Lead
alpha beta beta
gamma
Image by MIT OpenCourseWare.
R elat i ve Ener g y Dep o si t i o n
Which do you think deposi ts the +2
m ost ener g y?
± 1
Wher e? ( Over what r ange ? )
Which type( s) is/ar e safer outside the body?
Which type( s) is/ar e safer inside the body?
Y ou hav e f our highly radioac t iv e c ook ies :
α β γ n
Y ou m us t :
P ut one in your pocket H old one in your hand E at one G ive one t o a “f riend”
O ld 2 2.01 Fi nal Exam Quest i o n
W hat do y ou do?
A tom s ar e deter m i n e d by the num be r of pr oton s
– Exa m p le : He liu m A L W A YS h a s t wo p r o t o n s
T wo specia l types:
Io ns, Iso t o p es
– Ion
• S a m e # pr ot ons & neut r ons
• Dif f er ent # elec t r ons ( c har ge)
– Isotope
• S a m e # pr ot ons
Ion – A n at om wit h a c har ge ( dif f er ent # of pr ot ons & elec t r ons )
Is ot ope – A n at om wit h a dif f er ent num ber of neut r ons ( m as s )
N ot a t ion
• Dif f er ent # neut r ons ( m as s )
4 He
4 He
4 He +
3 He
Iso t o p i c No t at i o n
𝑍
± 𝑐
3 He
𝐴 𝑁𝑎𝑚 𝑒
A t om ic N um be r ( Z) – T he num ber of pr ot ons in an at om
M ass Nu mb er ( A) – T he t ot al num ber of nuc leons in an at om
N ot a t ion
Image No t a t i o n T empl at e
𝑈 = 𝑈
𝟗𝟗 𝟐𝟐𝟐𝟐 𝟎𝟎 𝟗𝟗 𝟐𝟐𝟐𝟐
𝟗𝟗𝟗𝟗
𝑈 = 𝑈
𝟗𝟗 𝟐𝟐𝟐𝟐 + 𝟒𝟒 𝟗𝟗 𝟐𝟐𝟐𝟐 + 𝟒𝟒
𝟗𝟗𝟗𝟗
𝟗𝟗𝟐𝟐
𝟔𝟔𝟎𝟎 𝐶𝑜 𝟎𝟎 = 𝟔𝟔𝟎𝟎 𝐶𝑜
No t at i o n Examp les
𝐶𝑠 =
1 𝟐𝟐𝟐𝟐 + 1
𝟐𝟐𝟐𝟐
𝟗𝟗
𝟒𝟒 𝐻 𝑒 + 𝟗𝟗 =
1 𝟐𝟐𝟐𝟐 𝐶𝑠 + 1
𝟒𝟒 𝐻 𝑒 + 𝟗𝟗 = 𝛂
St able Iso t o p es
S table isotopes do not under g o s p ont a neous
r adio a ctive decay
Which ar e stable? Consult the T abl e o f Nuclide s
Courtesy of K orea Atomic Energy Research Institute. Used with p ermiss ion.
S t a ble Is ot ope – An is ot ope whic h does not under go s pont aneous , nat ur al r adioac t iv e dec ay
N ot a t ion
Look closer at one section
W hic h is ot opes of c hlor ine ar e s t able?
S a me n e u t r o n n u mb e r ( N)
St able Iso t o p es, At o mi c W ei g ht
S am e ato m i c n u mb e r ( Z )
St able Iso t o p es, At o mi c W ei g ht
Look closer at one section
W hic h is ot opes of c hlor ine ar e s t able? I n whic h per c ent ages ?
Look closer at one section
W hic h is ot opes of c hlor ine ar e s t able? I n whic h per c ent ages ?
𝑀𝑎 𝑠 𝑠 𝐶𝑙 =
Courtesy of Korea Atomic Energy Research Institute. Used with permission.
0. 7 5 7 7 ∗ 3 4 . 98
0. 2 4 2 3 ∗ 3 6 . 9 7
+
= 3 5 . 46 𝑎 𝑚𝑢
St able Iso t o p es, At o mi c W ei g ht
Li terat ure v al ue: 35 . 453 ± 0. 00 2 𝑎 𝑚𝑢
A t om ic W e ight – T he av er age s t able elem ent is ot opic weight
At o mi c M ass Un i t ( amu ) – Exa ct l y 1 ⁄ 12 t he weight of 12 𝐶
N ot a t ion
14
M o r e Feat ur es o f t he Nucli d e T able
E xcess M ass ( Δ) – T he m as s of a nuc leus not ac c ount ed f or by t he weight of it s pr ot ons and neut r ons alone
N ot a t ion
Courtesy of K orea Atomic Energy Research Institute. Used with p ermiss ion.
E xcess m ass
Y ields ener get ic s and nuc lear r eac t ion inf or m at ion
S tability
Y ields half lif e and s pec if ic ac t iv it y inf or m at ion
P ar ent nuclide s
Y ields nuc lear r eac t ion m ec hanis m inf or m at ion
M o r e Feat ur es o f t he Nucli d e T able
E xcess m ass
Y ields ener get ic s and nuc lear r eac t ion inf or m at ion
S tability
Y ields half lif e and s pec if ic ac t iv it y inf or m at ion
M ode of decay
Y ields nuc lear r eac t ion
Hal f Lif e – Th e ti m e i t t ak es 50% of an is ot ope t o dec ay
Decay E n erg y – T he t ot al ener gy inv olv ed in t his r adioac t iv e dec ay
N ot a t ion
Courtesy of K ore a Atomic Energy Research Institute. U sed with p ermiss ion. m ec hanis m inf or m at ion
Next T hr ee T o p i cs
W rit ing nuc lear reac t ions
Q uant if y ing energet ic s of reac t ions
P redic t ing radiat ion t y pe and energy
Radio a ctive De ca y – Natur al pr o cess
F ission – S plitting atom s
T oday’ s focus
Nuclear R eact i o ns
– T h e r m a l e n e r g y is co lle ct e d f r o m kin e t ic e n e r g y ( r e co il e n e r g y) o f f issio n p r o d u ct s
F usion – Com bin i n g atom s
– T h e r m a l e n e r g y is co lle ct e d f r o m m u lt ip le so u r ce s
Decay – T he nat ur al pr oc es s of uns t able is ot ope c hange
Fis s ion – T he pr oc es s of s plit t ing an is ot ope int o f is s ion f r agm ent s
Fus ion – T he pr oc es s of c om bining t wo is ot opes int o a new one
N ot a t ion
18
Nuclear R eact i o n P r i nci p les
CONS E R V E ( alm ost) E V E R Y T HING
M as s ( num ber of nuc leons )
Char ge
E ner gy
NO T nec es s ar ily pr ot ons and neut r ons
E xam ple : T r itium decay 𝛼 + 2
𝟐𝟐 𝐻 → 𝟐𝟐 𝐻 𝑒 + ? ? ? 𝛽 ±
𝛾𝛾
Nuclear R eact i o n P r i nci p les ( β )
CONS E R V E ( alm ost) E V E R Y T HING
M as s ( num ber of nuc leons )
Char ge
E ner gy
NO T nec es s ar ily pr ot ons and neut r ons
E xam ple : T r itium decay
𝟐𝟐 𝐻 → 𝟐𝟐 𝐻 𝑒 + + 𝛽 − + 𝐸 𝑟𝑥 𝑛
What is E rx n ? What else is m issing?
𝟐𝟐 𝐻 → 𝟐𝟐 𝐻 𝑒 + + 𝛽 − + 𝐸 𝑟𝑥 𝑛
T otal E rx n : Look at dif fer en ce s in excess m ass
𝑀 𝑒𝑉
𝑄𝑄
= ∆ 𝑃 − ∆ 𝐷
Nuclear R eact i o n Ener g et i cs ( β )
T he Q value gives this am oun t
P ar ents ( P ) ar e all specie s on the left side
Daugh te r s ( D ) ar e all on the r ight side
𝟐𝟐 𝐻 → 𝟐𝟐 𝐻 𝑒 + +
~0
𝛽 −
+ 𝐸 𝑟𝑥 𝑛
Nuclear R eact i o n Ener g et i cs ( β )
𝑸
Courtesy of K orea Atomic Energy Research Institute. Used with p ermiss ion.
𝑀 𝑒 𝑉
= ∆ 𝑃 − ∆ 𝐷 = 1 𝟒𝟒 . 𝟗𝟗 𝟐𝟐𝟎𝟎 − 1 𝟒𝟒 . 𝟗𝟗 𝟐𝟐1 = 𝟎𝟎 . 𝟎𝟎 1𝟗𝟗 𝑀 𝑒 𝑉 22
𝟐𝟐 𝐻 → 𝟐𝟐 𝐻 𝑒 + + 𝛽 − + 𝐸 𝑟𝑥 𝑛
T otal E rx n : Look at dif fer en ce s in excess m ass
𝑀 𝑒 𝑉
𝑸
= ∆ 𝑃 − ∆ 𝐷 = 1 𝟒𝟒 . 𝟗𝟗 𝟐𝟐𝟎𝟎 − 1 𝟒𝟒 . 𝟗𝟗 𝟐𝟐1 = 𝟎𝟎 . 𝟎𝟎 1𝟗𝟗 𝑀 𝑒 𝑉
Nuclear R eact i o n Ener g et i cs ( β )
Not all ener g y goes to the beta par ticle
A v er age bet a ener gy : 5. 7 ke V
S om e, not all, goes t o t he daught er nuc lide' s r ec oil
Wher e does the r est go?
3 𝐻 → 3 𝐻 𝑒 +
+ 𝛽 − +
0 𝝂
+ 𝐸 𝑟𝑥 𝑛
Nuclear R eact i o n Ener g et i cs ( β )
0
An antine u tr in o car r ie s away the excess ener g y
Char g e le ss, essentia ll y m assless par ticle s
E xtr em ely har d to detect!
How did we know of their existence ? M issi n g ener g y in the r eaction ba l a n ce !
Neutr in o ( ν )
C hargel es s , n e a r ly m a ssle ss p a r t icle
A nti- neu tr in o ( ν � )
A nti par ti c l e equi v al e nt of the neutr i no
C h e re n k o v ra d i a ti o n ri n g s p ro d u c e d b y
O t her T y p es o f Rad i at i o n
Courtesy of Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo. Used with permission.
© Tomasz Barszczak. All rights reserved. This content is
Su p e r K am i o kan d e n e u tri n o d et ect o r , Jap an
25
excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
S om etim es beta decay leave s the nucleu s in an
excited state
T his ener g y can be lost thr ough gam m a em ission , br ing in g the nucle us to the gr oun d state
E xam ple : Cobalt- 60
D enotes excited
state
𝟔𝟔𝟎𝟎 𝐶𝑜
→ 𝟔𝟔𝟎𝟎 ∗ 𝑁𝑖 + + 𝛽 − +
0 𝝂
Nuclear R eact i o n P r i nci p les ( γ )
0
𝟔𝟔𝟎𝟎 ∗ 𝑁𝑖 + →
𝟔𝟔𝟎𝟎 𝑁𝑖 + + γ
26
Nuclear R eact i o n P r i nci p les ( γ )
How to deter m i n e gam m a ener g y levels?
Use ener g y level diagr a m s
Nuclear R eact i o n P r i nci p les ( γ )
How c an t hi s be ?
I nt e r na l c onv e r si on – c om pe t i ng pr oc e ss w i t h ga m m a e m i ss i on
Inter nal conver sio n ( IC)
Excit e d st a t e kicks o u t a n in n e r -sh e l l e le ct r o n
E xam ple : Cobalt- 6 0 m o st likely m echan ism
0
𝟔𝟔 𝟎𝟎 𝐶 𝑜 → 𝟔𝟔 𝟎𝟎 ∗ 𝑁𝑖 + + 𝛽 − +
0 𝝂 β
𝟔𝟔 𝟎𝟎 𝟗𝟗 . 𝟐𝟐1 𝑀 𝑒 𝑉 𝑁𝑖 + → 𝟔𝟔 𝟎𝟎 𝟗𝟗 . 1 𝟔𝟔 𝑀 𝑒 𝑉 𝑁𝑖 +𝟗𝟗 + 𝑒 − IC
Nuclear R eact i o n P r i nci p les ( γ )
𝟔𝟔 𝟎𝟎 𝟗𝟗 . 1 𝟔𝟔 𝑀 𝑒 𝑉 𝑁𝑖 +𝟗𝟗 →
𝟔𝟔 𝟎𝟎 1 . 𝟐𝟐𝟐𝟐 𝑀 𝑒 𝑉 𝑁𝑖 + 𝟗𝟗 →
𝟔𝟔 𝟎𝟎 1 . 𝟐𝟐𝟐𝟐 𝑀 𝑒 𝑉 𝑁𝑖 + 𝟗𝟗 + γ γ
𝟔𝟔 𝟎𝟎 𝑁𝑖 + 𝟗𝟗 + γ γ
29
Resul ting radiation spectrum can be complex
Example: Cesi um - 137
Nuclear R eacti on Princ iples ( γ )
Graph © Wiley-VCH, from J. Turner, Atoms, Radiation, and Radiation Protection (2007). All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
Courtesy of Korea Atomic Energy Research Institute. Used with permission.
30
Nuclear R eact i o n P r i nci p les ( γ )
Courtesy of K orea Atomic Energy Research Institute. Used with p ermiss ion. 31
Relative ly heavy isotope s can em it a heliu m nucleu s ( alpha par ticle)
E xam ple : A m er icium - 241
𝟗𝟗𝟒𝟒 1 𝐴 𝑚 → 𝟗𝟗 𝟐𝟐𝟐𝟐 ∗ 𝑁𝑝 −𝟗𝟗 + α + 2
𝟗𝟗 𝟐𝟐𝟐𝟐 ∗ 𝑁𝑝 − 𝟗𝟗 →
𝟗𝟗 𝟐𝟐𝟐𝟐 𝑁𝑝 − 𝟗𝟗 + γ
Nuclear R eact i o n P r i nci p les ( α )
32
Nuclear R eact i o n P r i nci p les ( α )
Use s o f Am e r iciu m :
© MD111 on Flickr. License CC B Y -S A. This content i s excluded from our Creative
Commo ns license. For more information, see http://ocw.mit.edu/help/faq -f air - u se/ . 33
Nuclear R eact i o n P r i nci p les ( α )
Ho w' s t h i s d e ca y ch a in ?
Courtesy of Korea Atomic Energy Research Institute. Used with permission. 34
H alf L i fe
T im e it takes for half of an isotope to decay
T he decay constant r elates this to an expon e ntia l for m of the sam e r ule
1.0
0.693
T
A A 0
0.5
A = e - t
A 0
0.25
0.125
0
T
2T
3T
t
Image by MIT OpenCourseWare. 35
Define an activity in ter m s of decays per second
𝑑 𝑁
𝐴 = −
𝑑 𝑡
= 𝜆𝑁 𝐴 = 𝐴 0 @ 𝑡 = 0
S olve the or din a r y dif fer en tia l equatio n :
𝑑𝑁
𝑡 = 0
𝑁 = −𝜆 ∗ 𝑑 𝑡 ln 𝑁 = −𝜆 𝑡 + 𝑐 ln 𝑁 0 = 𝑐
ln 𝑁 = −𝜆 𝑡 + ln 𝑁 0
𝑁
𝑙𝑛
𝑁 0
= −𝜆 𝑡 𝑁 = 𝑁 0
𝑒 − 𝜆𝑡
H alf L i fe
λ descr ibe s how quickly the num b er of atom s N
chang e s by a factor of e
𝑑 𝑁
𝐴 = − 𝑑 𝑡 = 𝜆𝑁 𝐴 = 𝐴 0 @ 𝑡 = 0
𝑁 = 𝑁 0
𝐴
𝜆
𝑒 −𝜆𝑡
= 𝐴 0
𝑒 − 𝜆𝑡
𝜆
Fi nd the hal f l i fe ( T ) :
𝑁
𝑁 0
= 1 = 𝑒 − 𝜆𝑇 ln 0. 5 = − 𝜆𝑇 𝑇
2
0. 693
=
𝜆
H alf L i fe
Act i vi t y – A m eas ur e of t he num ber of r adioac t iv e dec ay s per s ec ond Decay Co n st an t – T he c ons t ant f or an ac t iv it y t o dec r eas e by a f ac t or of e H a lf Lif e – T he t im e it t ak es a s am ple' s ac t iv it y t o dec r eas e by a f ac t or of 2
N ot a t ion
M easur i ng Act i vi t y
A ctivity is m easur e d in B ecquer e l s ( Bq )
1 𝐵𝑞 = 1 𝐷𝑖 𝑠𝑖 𝑛𝑡 𝑒 𝑔𝑟 𝑎𝑡 𝑖𝑜 𝑛 𝑝 𝑒𝑟 𝑠 𝑒𝑐 𝑜𝑛 𝑑
A m or e conveni e n t unit is the Cur ie ( Ci )
1 𝐶𝑖 = 3. 7 × 10 10 𝐵𝑞
Y ou will often see r educe d un i ts ( m Ci, µCi) o n r eal devices and sour ces
O n e Cu r ie is a l ot o f r a d ia t io n ! ! !
Becq u erel ( Bq ) – T he f undam ent al unit of r adioac t iv it y , equal t o one dis int egr at ion per s ec ond
C ur ie ( C i) – A m or e c onv enient ac t iv it y unit , 1 Ci = 3. 7 x 10 10 B q
N ot a t ion
Act i vi t y o n So ur ces and De vi ces
en.wikipedia.org/wiki/Americium www. prc68.com/I/Rad_Det.shtml
© MD111 on Flickr. License CC B Y -SA . This content i s excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq -fa ir -us e/ .
Label photo courtesy of Brooke Clarke. Used with permission. 39
T hi nki ng Ahead fo r t he L ab
How do you m easur e the activity of a sour ce?
How do you accoun t for older sour ces?
What else will m ake m easur i n g the activity of a sour ce dif ficult?
I n o t h e r wo r d s, wh a t a r e p o ssib le so u r ce s o f e r r o r and/or c onfus i on?
40
41
MIT OpenCourseWare http://ocw.mit.edu
22. S902 Do-It-Yourself (DIY) Geiger Counters
January IAP 2015
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .